diffusion_rs_backend/cublaslt/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
// https://github.com/huggingface/text-embeddings-inference/blob/cc1c510e8d8af8447c01e6b14c417473cf2dfda9/backends/candle/src/layers/cublaslt.rs
#![allow(unused_variables, unused_imports, dead_code)]
use diffusion_rs_common::core::{Device, Result, Tensor};
use diffusion_rs_common::nn::Activation as CandleActivation;
use once_cell::sync::Lazy;
use std::sync::{Mutex, Once};
#[cfg(feature = "cuda")]
mod api;
#[cfg(feature = "cuda")]
mod matmul;
#[cfg(feature = "cuda")]
pub use api::{fused_batch_matmul, CublasLt};
pub enum F8MatmulOutType {
F8,
BF16,
}
static INIT: Once = Once::new();
static mut CUBLASLT: Option<CublasLtWrapper> = None;
pub static CUBLASLT_HANDLE: Lazy<Mutex<Option<&'static CublasLtWrapper>>> =
Lazy::new(|| Mutex::new(None));
pub fn maybe_init_cublas_lt_wrapper() {
unsafe {
INIT.call_once(|| {
#[cfg(not(feature = "cuda"))]
{
CUBLASLT = None;
}
#[cfg(feature = "cuda")]
{
// Check if we can call the driver
// Then check if we can create a device
// Then check that the device is CUDA
use diffusion_rs_common::core::cuda_backend::cudarc::driver;
CUBLASLT = driver::result::init()
.ok()
.and_then(|_| Device::cuda_if_available(0).ok())
.and_then(|device| match device {
Device::Cuda(_) => Some(CublasLtWrapper {
cublaslt: CublasLt::new(&device).unwrap(),
}),
_ => None,
});
}
#[allow(static_mut_refs)]
let cublaslt: Option<&'static CublasLtWrapper> = CUBLASLT.as_ref();
*CUBLASLT_HANDLE.lock().unwrap() = cublaslt;
});
}
}
#[derive(Debug, Clone)]
pub struct CublasLtWrapper {
#[cfg(feature = "cuda")]
pub cublaslt: CublasLt,
}
impl CublasLtWrapper {
/// Fused batch matmul + add + Relu/Gelu activation using CublasLt.
///
/// # Arguments
///
/// * `a` - Input tensor of size BxMxK
/// * `b` - Input tensor of size BxNxK
/// * `out` - Optional Output tensor of size BxNxK.
/// If set and beta != 0, will be added to the end result of A*B before `act`
/// * `alpha` - Optional scaling factor for A*B
/// * `beta` - Optional scaling factor for C
/// * `bias` - Optional bias tensor of size M
/// * `act` - Optional Gelu or Relu activation. If set, will be added to the end result
///
/// The resulting tensor is of shape NxM
#[allow(clippy::too_many_arguments)]
pub fn batch_matmul(
&self,
a: &Tensor,
b: &Tensor,
out: Option<&Tensor>,
alpha: Option<f32>,
beta: Option<f32>,
bias: Option<&Tensor>,
act: Option<CandleActivation>,
) -> Result<Tensor> {
#[cfg(feature = "cuda")]
{
let inner_act = act.map(|a| match a {
CandleActivation::Relu => matmul::Activation::Relu,
CandleActivation::Gelu => matmul::Activation::Gelu,
_ => unreachable!("Unsupported activation in cublaslt matmul"),
});
let mut result = fused_batch_matmul(
a,
b,
out,
alpha,
beta,
bias,
inner_act,
self.cublaslt.clone(),
)?;
if Some(CandleActivation::Swiglu) == act {
result = diffusion_rs_common::nn::ops::swiglu(&result)?;
}
Ok(result)
}
#[cfg(not(feature = "cuda"))]
{
diffusion_rs_common::bail!("`cuda` feature is not enabled")
}
}
}