diffusion_rs_backend/
ops.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
use diffusion_rs_common::core::{CpuStorage, Layout, Result, Shape, Tensor};

#[allow(dead_code)]
struct Sdpa {
    scale: f32,
    softcapping: f32,
}

impl diffusion_rs_common::core::CustomOp3 for Sdpa {
    fn name(&self) -> &'static str {
        "metal-sdpa"
    }

    fn cpu_fwd(
        &self,
        _s1: &CpuStorage,
        _l1: &Layout,
        _s2: &CpuStorage,
        _l2: &Layout,
        _s3: &CpuStorage,
        _l3: &Layout,
    ) -> Result<(CpuStorage, Shape)> {
        diffusion_rs_common::bail!("SDPA has no cpu impl")
    }

    #[cfg(feature = "metal")]
    fn metal_fwd(
        &self,
        q: &diffusion_rs_common::core::MetalStorage,
        q_l: &Layout,
        k: &diffusion_rs_common::core::MetalStorage,
        k_l: &Layout,
        v: &diffusion_rs_common::core::MetalStorage,
        v_l: &Layout,
    ) -> Result<(diffusion_rs_common::core::MetalStorage, Shape)> {
        use crate::metal_kernels::SdpaDType;
        use diffusion_rs_common::core::{backend::BackendStorage, DType, Shape, D};

        let device = q.device();

        let out_dims = vec![q_l.dim(0)?, q_l.dim(1)?, q_l.dim(2)?, v_l.dim(3)?];
        let elem_count: usize = out_dims.iter().product();

        let output = device.new_buffer(elem_count, q.dtype(), "sdpa_o")?;

        // q,k must have matching emb dim
        if q_l.dim(D::Minus1)? != k_l.dim(D::Minus1)? {
            diffusion_rs_common::bail!("`q` and `k` last dims must match");
        }

        // k,v must have matching n kv heads
        if v_l.dim(D::Minus(3))? != k_l.dim(D::Minus(3))? {
            diffusion_rs_common::bail!("`k` and `v` head dims must match");
        }

        // n_heads % n_kv_heads == 0; n_heads >= 1, n_kv_heads >= 1.
        if q_l.dim(D::Minus(3))? % k_l.dim(D::Minus(3))? != 0 {
            diffusion_rs_common::bail!("query `n_heads` must be a multiple of `n_kv_heads`");
        }

        let k_head = k_l.dim(D::Minus1)?;
        let q_head = q_l.dim(D::Minus1)?;
        let q_seq = q_l.dim(2)?;

        let mut implementation_supports_use_case = q_head == k_head;
        let supported_head_dim =
            q_head == 32 || q_head == 64 || q_head == 96 || q_head == 128 || q_head == 256;

        const SDPA_FULL_THRESHOLD: usize = 2;

        let supports_sdpa_full =
            q_seq >= SDPA_FULL_THRESHOLD && supported_head_dim && q_head == k_head;
        let supports_sdpa_vector = q_seq == 1 && supported_head_dim;

        implementation_supports_use_case &= supports_sdpa_full || supports_sdpa_vector;

        if !supported_head_dim {
            diffusion_rs_common::bail!(
                "Meta SDPA does not support q head dim {q_head}: q dims {:?}, k dims {:?}, v dims {:?}.",
                q_l.dims(),
                k_l.dims(),
                v_l.dims()
            );
        }
        if !implementation_supports_use_case {
            diffusion_rs_common::bail!(
                "Meta SDPA does not support q dims {:?}, k dims {:?}, v dims {:?}.",
                q_l.dims(),
                k_l.dims(),
                v_l.dims()
            );
        }

        for t in [k.dtype(), v.dtype()] {
            if q.dtype() != t {
                diffusion_rs_common::bail!("all q, k, v dtypes must match.");
            }
        }

        let itype = match q.dtype() {
            DType::BF16 => SdpaDType::BF16,
            DType::F16 => SdpaDType::F16,
            DType::F32 => SdpaDType::F32,
            other => diffusion_rs_common::bail!("unsupported sdpa type {other:?}"),
        };

        let command_buffer = q.device().command_buffer()?;
        if supports_sdpa_vector {
            // Route to the 2 pass fused attention if the k seqlen is large.
            // https://github.com/ml-explore/mlx/pull/1597
            const TWO_PASS_K_THRESHOLD: usize = 1024;
            if k_l.dim(2)? >= TWO_PASS_K_THRESHOLD {
                let mut intermediate_shape = [
                    &out_dims[0..out_dims.len() - 2],
                    &[crate::metal_kernels::SDPA_2PASS_BLOCKS],
                    &[out_dims[out_dims.len() - 1]],
                ]
                .concat();
                let intermediate = device.new_buffer(
                    intermediate_shape.iter().product::<usize>(),
                    DType::F32,
                    "sdpa_2pass_intermediate",
                )?;
                let _ = intermediate_shape.pop().unwrap();
                let sums = device.new_buffer(
                    intermediate_shape.iter().product::<usize>(),
                    DType::F32,
                    "sdpa_2pass_sums",
                )?;
                let maxs = device.new_buffer(
                    intermediate_shape.iter().product::<usize>(),
                    DType::F32,
                    "sdpa_2pass_maxs",
                )?;

                command_buffer.set_label("vector_attention");
                crate::metal_kernels::call_sdpa_vector_2pass(
                    q.device().device(),
                    &command_buffer,
                    &crate::metal_kernels::Kernels::new(),
                    q_l.start_offset(),
                    q_l.dims(),
                    q.buffer(),
                    k_l.start_offset(),
                    k_l.dims(),
                    k_l.stride(),
                    k.buffer(),
                    v_l.start_offset(),
                    v_l.stride(),
                    v.buffer(),
                    &output,
                    &intermediate,
                    &sums,
                    &maxs,
                    self.scale,
                    self.softcapping,
                    itype,
                )
                .map_err(diffusion_rs_common::core::Error::wrap)?;
            } else {
                command_buffer.set_label("vector_attention");
                crate::metal_kernels::call_sdpa_vector(
                    q.device().device(),
                    &command_buffer,
                    &crate::metal_kernels::Kernels::new(),
                    q_l.start_offset(),
                    q_l.dims(),
                    q.buffer(),
                    k_l.start_offset(),
                    k_l.dims(),
                    k_l.stride(),
                    k.buffer(),
                    v_l.start_offset(),
                    v_l.stride(),
                    v.buffer(),
                    &output,
                    self.scale,
                    self.softcapping,
                    itype,
                )
                .map_err(diffusion_rs_common::core::Error::wrap)?;
            }
        } else if supports_sdpa_full {
            if q_l.dim(2)? != k_l.dim(2)? {
                diffusion_rs_common::bail!(
                    "query and key sequence length must be equal if using full metal sdpa"
                )
            }

            command_buffer.set_label("full_attention");
            crate::metal_kernels::call_sdpa_full(
                q.device().device(),
                &command_buffer,
                &crate::metal_kernels::Kernels::new(),
                q_l.start_offset(),
                q_l.dims(),
                q.buffer(),
                k_l.start_offset(),
                k.buffer(),
                v_l.start_offset(),
                v.buffer(),
                &output,
                self.scale,
                self.softcapping,
                itype,
            )
            .map_err(diffusion_rs_common::core::Error::wrap)?;
        } else {
            diffusion_rs_common::bail!("must be vector or full sdpa kernel");
        }

        let newstorage = diffusion_rs_common::core::MetalStorage::new(
            output,
            device.clone(),
            elem_count,
            q.dtype(),
        );
        Ok((newstorage, Shape::from_dims(&out_dims)))
    }
}

/// Scaled dot product attention with a fused kernel.
///
/// Computes softmax(qk^T*scale)v.
///
/// **Inputs shapes:**
/// - `q`: (bs, qhead, seq, hidden)
/// - `k`: (bs, kv_head, kv_seq, hidden)
/// - `k`: (bs, kv_head, kv_seq, v_hidden)
/// - `scale` is applied before softmax.
/// - If `softcapping` != 1.0:
///      - Computation is: softmax(tanh(qk^T*scale/cap)*cap)v
///
/// **Output shape:** (bs, qhead, seq, v_hidden)
///
/// **Supported head dims:** 32, 64, 96, 128, 256.
///
/// ## On Metal:
/// - If `seq` == 1:
///     - Use a vectorized kernel
///     - Supports `seq` != `kv_seq` (cross attn. support)
///     - Supports GQA when `qhead` is a multiple of `kv_head`
/// - Otherwise:
///     - Use an alternate kernel
///     - Requires `seq` == `kv_seq`
///     - GQA is not supported (requires `qhead` == `kv_head`)
pub fn sdpa(q: &Tensor, k: &Tensor, v: &Tensor, scale: f32, softcapping: f32) -> Result<Tensor> {
    // Only use kernel for Metal as we only have one for that
    if q.device().is_metal() {
        q.apply_op3_no_bwd(k, v, &Sdpa { scale, softcapping })
    } else {
        let mut att = (q.matmul(&k.t()?)? * (scale as f64))?;
        if softcapping != 1.0 {
            att = (att / softcapping as f64)?;
            att = att.tanh()?;
            att = (att * softcapping as f64)?;
        }

        att = diffusion_rs_common::nn::ops::softmax_last_dim(&att)?;
        att.matmul(v)
    }
}