use crate::core::{DType, Result, Tensor, WithDType};
use float8::F8E4M3;
use half::{bf16, f16};
impl Tensor {
fn fmt_dt<T: WithDType + std::fmt::Display>(
&self,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
let device_str = match self.device().location() {
crate::core::DeviceLocation::Cpu => "".to_owned(),
crate::core::DeviceLocation::Cuda { gpu_id } => {
format!(", cuda:{}", gpu_id)
}
crate::core::DeviceLocation::Metal { gpu_id } => {
format!(", metal:{}", gpu_id)
}
};
write!(f, "Tensor[")?;
match self.dims() {
[] => {
if let Ok(v) = self.to_scalar::<T>() {
write!(f, "{v}")?
}
}
[s] if *s < 10 => {
if let Ok(vs) = self.to_vec1::<T>() {
for (i, v) in vs.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{v}")?;
}
}
}
dims => {
write!(f, "dims ")?;
for (i, d) in dims.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{d}")?;
}
}
}
write!(f, "; {}{}]", self.dtype().as_str(), device_str)
}
}
impl std::fmt::Debug for Tensor {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self.dtype() {
DType::I8 => self.fmt_dt::<i8>(f),
DType::U8 => self.fmt_dt::<u8>(f),
DType::U32 => self.fmt_dt::<u32>(f),
DType::I16 => self.fmt_dt::<i16>(f),
DType::I32 => self.fmt_dt::<i32>(f),
DType::I64 => self.fmt_dt::<i64>(f),
DType::BF16 => self.fmt_dt::<bf16>(f),
DType::F16 => self.fmt_dt::<f16>(f),
DType::F32 => self.fmt_dt::<f32>(f),
DType::F64 => self.fmt_dt::<f64>(f),
DType::F8E4M3 => self.fmt_dt::<F8E4M3>(f),
}
}
}
#[derive(Debug, Clone)]
pub struct PrinterOptions {
pub precision: usize,
pub threshold: usize,
pub edge_items: usize,
pub line_width: usize,
pub sci_mode: Option<bool>,
}
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
std::sync::Mutex::new(PrinterOptions::const_default());
impl PrinterOptions {
const fn const_default() -> Self {
Self {
precision: 4,
threshold: 1000,
edge_items: 3,
line_width: 80,
sci_mode: None,
}
}
}
pub fn print_options() -> &'static std::sync::Mutex<PrinterOptions> {
&PRINT_OPTS
}
pub fn set_print_options(options: PrinterOptions) {
*PRINT_OPTS.lock().unwrap() = options
}
pub fn set_print_options_default() {
*PRINT_OPTS.lock().unwrap() = PrinterOptions::const_default()
}
pub fn set_print_options_short() {
*PRINT_OPTS.lock().unwrap() = PrinterOptions {
precision: 2,
threshold: 1000,
edge_items: 2,
line_width: 80,
sci_mode: None,
}
}
pub fn set_print_options_full() {
*PRINT_OPTS.lock().unwrap() = PrinterOptions {
precision: 4,
threshold: usize::MAX,
edge_items: 3,
line_width: 80,
sci_mode: None,
}
}
pub fn set_line_width(line_width: usize) {
PRINT_OPTS.lock().unwrap().line_width = line_width
}
pub fn set_precision(precision: usize) {
PRINT_OPTS.lock().unwrap().precision = precision
}
pub fn set_edge_items(edge_items: usize) {
PRINT_OPTS.lock().unwrap().edge_items = edge_items
}
pub fn set_threshold(threshold: usize) {
PRINT_OPTS.lock().unwrap().threshold = threshold
}
pub fn set_sci_mode(sci_mode: Option<bool>) {
PRINT_OPTS.lock().unwrap().sci_mode = sci_mode
}
struct FmtSize {
current_size: usize,
}
impl FmtSize {
fn new() -> Self {
Self { current_size: 0 }
}
fn final_size(self) -> usize {
self.current_size
}
}
impl std::fmt::Write for FmtSize {
fn write_str(&mut self, s: &str) -> std::fmt::Result {
self.current_size += s.len();
Ok(())
}
}
trait TensorFormatter {
type Elem: WithDType;
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result;
fn max_width(&self, to_display: &Tensor) -> usize {
let mut max_width = 1;
if let Ok(vs) = to_display.flatten_all().and_then(|t| t.to_vec1()) {
for &v in vs.iter() {
let mut fmt_size = FmtSize::new();
let _res = self.fmt(v, 1, &mut fmt_size);
max_width = usize::max(max_width, fmt_size.final_size())
}
}
max_width
}
fn write_newline_indent(i: usize, f: &mut std::fmt::Formatter) -> std::fmt::Result {
writeln!(f)?;
for _ in 0..i {
write!(f, " ")?
}
Ok(())
}
fn fmt_tensor(
&self,
t: &Tensor,
indent: usize,
max_w: usize,
summarize: bool,
po: &PrinterOptions,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
let dims = t.dims();
let edge_items = po.edge_items;
write!(f, "[")?;
match dims {
[] => {
if let Ok(v) = t.to_scalar::<Self::Elem>() {
self.fmt(v, max_w, f)?
}
}
[v] if summarize && *v > 2 * edge_items => {
if let Ok(vs) = t
.narrow(0, 0, edge_items)
.and_then(|t| t.to_vec1::<Self::Elem>())
{
for v in vs.into_iter() {
self.fmt(v, max_w, f)?;
write!(f, ", ")?;
}
}
write!(f, "...")?;
if let Ok(vs) = t
.narrow(0, v - edge_items, edge_items)
.and_then(|t| t.to_vec1::<Self::Elem>())
{
for v in vs.into_iter() {
write!(f, ", ")?;
self.fmt(v, max_w, f)?;
}
}
}
[_] => {
let elements_per_line = usize::max(1, po.line_width / (max_w + 2));
if let Ok(vs) = t.to_vec1::<Self::Elem>() {
for (i, v) in vs.into_iter().enumerate() {
if i > 0 {
if i % elements_per_line == 0 {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
} else {
write!(f, ", ")?;
}
}
self.fmt(v, max_w, f)?
}
}
}
_ => {
if summarize && dims[0] > 2 * edge_items {
for i in 0..edge_items {
match t.get(i) {
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
Err(e) => write!(f, "{e:?}")?,
}
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
write!(f, "...")?;
Self::write_newline_indent(indent, f)?;
for i in dims[0] - edge_items..dims[0] {
match t.get(i) {
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
Err(e) => write!(f, "{e:?}")?,
}
if i + 1 != dims[0] {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
}
} else {
for i in 0..dims[0] {
match t.get(i) {
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
Err(e) => write!(f, "{e:?}")?,
}
if i + 1 != dims[0] {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
}
}
}
}
write!(f, "]")?;
Ok(())
}
}
struct FloatFormatter<S: WithDType> {
int_mode: bool,
sci_mode: bool,
precision: usize,
_phantom: std::marker::PhantomData<S>,
}
impl<S> FloatFormatter<S>
where
S: WithDType + num_traits::Float + std::fmt::Display,
{
fn new(t: &Tensor, po: &PrinterOptions) -> Result<Self> {
let mut int_mode = true;
let mut sci_mode = false;
let values = t
.flatten_all()?
.to_vec1()?
.into_iter()
.filter(|v: &S| v.is_finite() && !v.is_zero())
.collect::<Vec<_>>();
if !values.is_empty() {
let mut nonzero_finite_min = S::max_value();
let mut nonzero_finite_max = S::min_value();
for &v in values.iter() {
let v = v.abs();
if v < nonzero_finite_min {
nonzero_finite_min = v
}
if v > nonzero_finite_max {
nonzero_finite_max = v
}
}
for &value in values.iter() {
if value.ceil() != value {
int_mode = false;
break;
}
}
if let Some(v1) = S::from(1000.) {
if let Some(v2) = S::from(1e8) {
if let Some(v3) = S::from(1e-4) {
sci_mode = nonzero_finite_max / nonzero_finite_min > v1
|| nonzero_finite_max > v2
|| nonzero_finite_min < v3
}
}
}
}
match po.sci_mode {
None => {}
Some(v) => sci_mode = v,
}
Ok(Self {
int_mode,
sci_mode,
precision: po.precision,
_phantom: std::marker::PhantomData,
})
}
}
impl<S> TensorFormatter for FloatFormatter<S>
where
S: WithDType + num_traits::Float + std::fmt::Display + std::fmt::LowerExp,
{
type Elem = S;
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
if self.sci_mode {
write!(
f,
"{v:width$.prec$e}",
v = v,
width = max_w,
prec = self.precision
)
} else if self.int_mode {
if v.is_finite() {
write!(f, "{v:width$.0}.", v = v, width = max_w - 1)
} else {
write!(f, "{v:max_w$.0}")
}
} else {
write!(
f,
"{v:width$.prec$}",
v = v,
width = max_w,
prec = self.precision
)
}
}
}
struct IntFormatter<S: WithDType> {
_phantom: std::marker::PhantomData<S>,
}
impl<S: WithDType> IntFormatter<S> {
fn new() -> Self {
Self {
_phantom: std::marker::PhantomData,
}
}
}
impl<S> TensorFormatter for IntFormatter<S>
where
S: WithDType + std::fmt::Display,
{
type Elem = S;
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
write!(f, "{v:max_w$}")
}
}
fn get_summarized_data(t: &Tensor, edge_items: usize) -> Result<Tensor> {
let dims = t.dims();
if dims.is_empty() {
Ok(t.clone())
} else if dims.len() == 1 {
if dims[0] > 2 * edge_items {
Tensor::cat(
&[
t.narrow(0, 0, edge_items)?,
t.narrow(0, dims[0] - edge_items, edge_items)?,
],
0,
)
} else {
Ok(t.clone())
}
} else if dims[0] > 2 * edge_items {
let mut vs: Vec<_> = (0..edge_items)
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
.collect::<Result<Vec<_>>>()?;
for i in (dims[0] - edge_items)..dims[0] {
vs.push(get_summarized_data(&t.get(i)?, edge_items)?)
}
Tensor::cat(&vs, 0)
} else {
let vs: Vec<_> = (0..dims[0])
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&vs, 0)
}
}
impl std::fmt::Display for Tensor {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let po = PRINT_OPTS.lock().unwrap();
let summarize = self.elem_count() > po.threshold;
let to_display = if summarize {
match get_summarized_data(self, po.edge_items) {
Ok(v) => v,
Err(err) => return write!(f, "{err:?}"),
}
} else {
self.clone()
};
match self.dtype() {
DType::I8 => {
let tf: IntFormatter<i8> = IntFormatter::new();
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
DType::U8 => {
let tf: IntFormatter<u8> = IntFormatter::new();
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
DType::U32 => {
let tf: IntFormatter<u32> = IntFormatter::new();
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
DType::I16 => {
let tf: IntFormatter<i16> = IntFormatter::new();
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
DType::I32 => {
let tf: IntFormatter<i32> = IntFormatter::new();
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
DType::I64 => {
let tf: IntFormatter<i64> = IntFormatter::new();
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
DType::BF16 => {
if let Ok(tf) = FloatFormatter::<bf16>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
DType::F16 => {
if let Ok(tf) = FloatFormatter::<f16>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
DType::F64 => {
if let Ok(tf) = FloatFormatter::<f64>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
DType::F32 => {
if let Ok(tf) = FloatFormatter::<f32>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
DType::F8E4M3 => {
if let Ok(tf) = FloatFormatter::<F8E4M3>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
};
let device_str = match self.device().location() {
crate::core::DeviceLocation::Cpu => "".to_owned(),
crate::core::DeviceLocation::Cuda { gpu_id } => {
format!(", cuda:{}", gpu_id)
}
crate::core::DeviceLocation::Metal { gpu_id } => {
format!(", metal:{}", gpu_id)
}
};
write!(
f,
"Tensor[{:?}, {}{}]",
self.dims(),
self.dtype().as_str(),
device_str
)
}
}