diffusion_rs_common/core/
npy.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
//! Numpy support for tensors.
//!
//! The spec for the npy format can be found in
//! [npy-format](https://docs.scipy.org/doc/numpy-1.14.2/neps/npy-format.html).
//! The functions from this module can be used to read tensors from npy/npz files
//! or write tensors to these files. A npy file contains a single tensor (unnamed)
//! whereas a npz file can contain multiple named tensors. npz files are also compressed.
//!
//! These two formats are easy to use in Python using the numpy library.
//!
//! ```python
//! import numpy as np
//! x = np.arange(10)
//!
//! # Write a npy file.
//! np.save("test.npy", x)
//!
//! # Read a value from the npy file.
//! x = np.load("test.npy")
//!
//! # Write multiple values to a npz file.
//! values = { "x": x, "x_plus_one": x + 1 }
//! np.savez("test.npz", **values)
//!
//! # Load multiple values from a npz file.
//! values = np.loadz("test.npz")
//! ```
use crate::core::{DType, Device, Error, Result, Shape, Tensor};
use byteorder::{LittleEndian, ReadBytesExt};
use float8::F8E4M3;
use half::{bf16, f16, slice::HalfFloatSliceExt};
use std::collections::HashMap;
use std::fs::File;
use std::io::{BufReader, Read, Write};
use std::path::Path;
use std::slice;

const NPY_MAGIC_STRING: &[u8] = b"\x93NUMPY";
const NPY_SUFFIX: &str = ".npy";

fn read_header<R: Read>(reader: &mut R) -> Result<String> {
    let mut magic_string = vec![0u8; NPY_MAGIC_STRING.len()];
    reader.read_exact(&mut magic_string)?;
    if magic_string != NPY_MAGIC_STRING {
        return Err(Error::Npy("magic string mismatch".to_string()));
    }
    let mut version = [0u8; 2];
    reader.read_exact(&mut version)?;
    let header_len_len = match version[0] {
        1 => 2,
        2 => 4,
        otherwise => return Err(Error::Npy(format!("unsupported version {otherwise}"))),
    };
    let mut header_len = vec![0u8; header_len_len];
    reader.read_exact(&mut header_len)?;
    let header_len = header_len
        .iter()
        .rev()
        .fold(0_usize, |acc, &v| 256 * acc + v as usize);
    let mut header = vec![0u8; header_len];
    reader.read_exact(&mut header)?;
    Ok(String::from_utf8_lossy(&header).to_string())
}

#[derive(Debug, PartialEq)]
struct Header {
    descr: DType,
    fortran_order: bool,
    shape: Vec<usize>,
}

impl Header {
    fn shape(&self) -> Shape {
        Shape::from(self.shape.as_slice())
    }

    fn to_string(&self) -> Result<String> {
        let fortran_order = if self.fortran_order { "True" } else { "False" };
        let mut shape = self
            .shape
            .iter()
            .map(|x| x.to_string())
            .collect::<Vec<_>>()
            .join(",");
        let descr = match self.descr {
            DType::BF16 => Err(Error::Npy("bf16 is not supported".into()))?,
            DType::F16 => "f2",
            DType::F32 => "f4",
            DType::F64 => "f8",
            DType::I16 => "i2",
            DType::I32 => "i4",
            DType::I64 => "i8",
            DType::U32 => "u4",
            DType::I8 => "i1",
            DType::U8 => "u1",
            DType::F8E4M3 => Err(Error::Npy("f8e4m3 is not supported".into()))?,
        };
        if !shape.is_empty() {
            shape.push(',')
        }
        Ok(format!(
            "{{'descr': '<{descr}', 'fortran_order': {fortran_order}, 'shape': ({shape}), }}"
        ))
    }

    // Hacky parser for the npy header, a typical example would be:
    // {'descr': '<f8', 'fortran_order': False, 'shape': (128,), }
    fn parse(header: &str) -> Result<Header> {
        let header =
            header.trim_matches(|c: char| c == '{' || c == '}' || c == ',' || c.is_whitespace());

        let mut parts: Vec<String> = vec![];
        let mut start_index = 0usize;
        let mut cnt_parenthesis = 0i64;
        for (index, c) in header.chars().enumerate() {
            match c {
                '(' => cnt_parenthesis += 1,
                ')' => cnt_parenthesis -= 1,
                ',' => {
                    if cnt_parenthesis == 0 {
                        parts.push(header[start_index..index].to_owned());
                        start_index = index + 1;
                    }
                }
                _ => {}
            }
        }
        parts.push(header[start_index..].to_owned());
        let mut part_map: HashMap<String, String> = HashMap::new();
        for part in parts.iter() {
            let part = part.trim();
            if !part.is_empty() {
                match part.split(':').collect::<Vec<_>>().as_slice() {
                    [key, value] => {
                        let key = key.trim_matches(|c: char| c == '\'' || c.is_whitespace());
                        let value = value.trim_matches(|c: char| c == '\'' || c.is_whitespace());
                        let _ = part_map.insert(key.to_owned(), value.to_owned());
                    }
                    _ => return Err(Error::Npy(format!("unable to parse header {header}"))),
                }
            }
        }
        let fortran_order = match part_map.get("fortran_order") {
            None => false,
            Some(fortran_order) => match fortran_order.as_ref() {
                "False" => false,
                "True" => true,
                _ => return Err(Error::Npy(format!("unknown fortran_order {fortran_order}"))),
            },
        };
        let descr = match part_map.get("descr") {
            None => return Err(Error::Npy("no descr in header".to_string())),
            Some(descr) => {
                if descr.is_empty() {
                    return Err(Error::Npy("empty descr".to_string()));
                }
                if descr.starts_with('>') {
                    return Err(Error::Npy(format!("little-endian descr {descr}")));
                }
                // the only supported types in tensor are:
                //     float64, float32, float16,
                //     complex64, complex128,
                //     int64, int32, int16, int8,
                //     uint8, and bool.
                match descr.trim_matches(|c: char| c == '=' || c == '<' || c == '|') {
                    "e" | "f2" => DType::F16,
                    "f" | "f4" => DType::F32,
                    "d" | "f8" => DType::F64,
                    // "i" | "i4" => DType::S32,
                    "q" | "i8" => DType::I64,
                    // "h" | "i2" => DType::S16,
                    // "b" | "i1" => DType::S8,
                    "B" | "u1" => DType::U8,
                    "I" | "u4" => DType::U32,
                    "?" | "b1" => DType::U8,
                    // "F" | "F4" => DType::C64,
                    // "D" | "F8" => DType::C128,
                    descr => return Err(Error::Npy(format!("unrecognized descr {descr}"))),
                }
            }
        };
        let shape = match part_map.get("shape") {
            None => return Err(Error::Npy("no shape in header".to_string())),
            Some(shape) => {
                let shape = shape.trim_matches(|c: char| c == '(' || c == ')' || c == ',');
                if shape.is_empty() {
                    vec![]
                } else {
                    shape
                        .split(',')
                        .map(|v| v.trim().parse::<usize>())
                        .collect::<std::result::Result<Vec<_>, _>>()?
                }
            }
        };
        Ok(Header {
            descr,
            fortran_order,
            shape,
        })
    }
}

impl Tensor {
    // TODO: Add the possibility to read directly to a device?
    pub(crate) fn from_reader<R: std::io::Read>(
        shape: Shape,
        dtype: DType,
        reader: &mut R,
    ) -> Result<Self> {
        let elem_count = shape.elem_count();
        match dtype {
            DType::BF16 => {
                let mut data_t = vec![bf16::ZERO; elem_count];
                reader.read_u16_into::<LittleEndian>(data_t.reinterpret_cast_mut())?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::F16 => {
                let mut data_t = vec![f16::ZERO; elem_count];
                reader.read_u16_into::<LittleEndian>(data_t.reinterpret_cast_mut())?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::F32 => {
                let mut data_t = vec![0f32; elem_count];
                reader.read_f32_into::<LittleEndian>(&mut data_t)?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::F64 => {
                let mut data_t = vec![0f64; elem_count];
                reader.read_f64_into::<LittleEndian>(&mut data_t)?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::U8 => {
                let mut data_t = vec![0u8; elem_count];
                reader.read_exact(&mut data_t)?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::I8 => {
                let mut data_t = vec![0i8; elem_count];
                reader.read_i8_into(&mut data_t)?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::U32 => {
                let mut data_t = vec![0u32; elem_count];
                reader.read_u32_into::<LittleEndian>(&mut data_t)?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::I16 => {
                let mut data_t = vec![0i16; elem_count];
                reader.read_i16_into::<LittleEndian>(&mut data_t)?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::I32 => {
                let mut data_t = vec![0i32; elem_count];
                reader.read_i32_into::<LittleEndian>(&mut data_t)?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::I64 => {
                let mut data_t = vec![0i64; elem_count];
                reader.read_i64_into::<LittleEndian>(&mut data_t)?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
            DType::F8E4M3 => {
                let mut data_t = vec![F8E4M3::ZERO; elem_count];
                let ptr = data_t.as_mut_ptr().cast::<i8>();
                let len = data_t.len();
                reader.read_i8_into(unsafe { slice::from_raw_parts_mut(ptr, len) })?;
                Tensor::from_vec(data_t, shape, &Device::Cpu)
            }
        }
    }

    /// Reads a npy file and return the stored multi-dimensional array as a tensor.
    pub fn read_npy<T: AsRef<Path>>(path: T) -> Result<Self> {
        let mut reader = File::open(path.as_ref())?;
        let header = read_header(&mut reader)?;
        let header = Header::parse(&header)?;
        if header.fortran_order {
            return Err(Error::Npy("fortran order not supported".to_string()));
        }
        Self::from_reader(header.shape(), header.descr, &mut reader)
    }

    /// Reads a npz file and returns the stored multi-dimensional arrays together with their names.
    pub fn read_npz<T: AsRef<Path>>(path: T) -> Result<Vec<(String, Self)>> {
        let zip_reader = BufReader::new(File::open(path.as_ref())?);
        let mut zip = zip::ZipArchive::new(zip_reader)?;
        let mut result = vec![];
        for i in 0..zip.len() {
            let mut reader = zip.by_index(i)?;
            let name = {
                let name = reader.name();
                name.strip_suffix(NPY_SUFFIX).unwrap_or(name).to_owned()
            };
            let header = read_header(&mut reader)?;
            let header = Header::parse(&header)?;
            if header.fortran_order {
                return Err(Error::Npy("fortran order not supported".to_string()));
            }
            let s = Self::from_reader(header.shape(), header.descr, &mut reader)?;
            result.push((name, s))
        }
        Ok(result)
    }

    /// Reads a npz file and returns the stored multi-dimensional arrays for some specified names.
    pub fn read_npz_by_name<T: AsRef<Path>>(path: T, names: &[&str]) -> Result<Vec<Self>> {
        let zip_reader = BufReader::new(File::open(path.as_ref())?);
        let mut zip = zip::ZipArchive::new(zip_reader)?;
        let mut result = vec![];
        for name in names.iter() {
            let mut reader = match zip.by_name(&format!("{name}{NPY_SUFFIX}")) {
                Ok(reader) => reader,
                Err(_) => Err(Error::Npy(format!(
                    "no array for {name} in {:?}",
                    path.as_ref()
                )))?,
            };
            let header = read_header(&mut reader)?;
            let header = Header::parse(&header)?;
            if header.fortran_order {
                return Err(Error::Npy("fortran order not supported".to_string()));
            }
            let s = Self::from_reader(header.shape(), header.descr, &mut reader)?;
            result.push(s)
        }
        Ok(result)
    }

    fn write<T: Write>(&self, f: &mut T) -> Result<()> {
        f.write_all(NPY_MAGIC_STRING)?;
        f.write_all(&[1u8, 0u8])?;
        let header = Header {
            descr: self.dtype(),
            fortran_order: false,
            shape: self.dims().to_vec(),
        };
        let mut header = header.to_string()?;
        let pad = 16 - (NPY_MAGIC_STRING.len() + 5 + header.len()) % 16;
        for _ in 0..pad % 16 {
            header.push(' ')
        }
        header.push('\n');
        f.write_all(&[(header.len() % 256) as u8, (header.len() / 256) as u8])?;
        f.write_all(header.as_bytes())?;
        self.write_bytes(f)
    }

    /// Writes a multi-dimensional array in the npy format.
    pub fn write_npy<T: AsRef<Path>>(&self, path: T) -> Result<()> {
        let mut f = File::create(path.as_ref())?;
        self.write(&mut f)
    }

    /// Writes multiple multi-dimensional arrays using the npz format.
    pub fn write_npz<S: AsRef<str>, T: AsRef<Tensor>, P: AsRef<Path>>(
        ts: &[(S, T)],
        path: P,
    ) -> Result<()> {
        let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
        let options: zip::write::FileOptions<()> =
            zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);

        for (name, tensor) in ts.iter() {
            zip.start_file(format!("{}.npy", name.as_ref()), options)?;
            tensor.as_ref().write(&mut zip)?
        }
        Ok(())
    }
}

/// Lazy tensor loader.
pub struct NpzTensors {
    index_per_name: HashMap<String, usize>,
    path: std::path::PathBuf,
    // We do not store a zip reader as it needs mutable access to extract data. Instead we
    // re-create a zip reader for each tensor.
}

impl NpzTensors {
    pub fn new<T: AsRef<Path>>(path: T) -> Result<Self> {
        let path = path.as_ref().to_owned();
        let zip_reader = BufReader::new(File::open(&path)?);
        let mut zip = zip::ZipArchive::new(zip_reader)?;
        let mut index_per_name = HashMap::new();
        for i in 0..zip.len() {
            let file = zip.by_index(i)?;
            let name = {
                let name = file.name();
                name.strip_suffix(NPY_SUFFIX).unwrap_or(name).to_owned()
            };
            index_per_name.insert(name, i);
        }
        Ok(Self {
            index_per_name,
            path,
        })
    }

    pub fn names(&self) -> Vec<&String> {
        self.index_per_name.keys().collect()
    }

    /// This only returns the shape and dtype for a named tensor. Compared to `get`, this avoids
    /// reading the whole tensor data.
    pub fn get_shape_and_dtype(&self, name: &str) -> Result<(Shape, DType)> {
        let index = match self.index_per_name.get(name) {
            None => crate::bail!("cannot find tensor {name}"),
            Some(index) => *index,
        };
        let zip_reader = BufReader::new(File::open(&self.path)?);
        let mut zip = zip::ZipArchive::new(zip_reader)?;
        let mut reader = zip.by_index(index)?;
        let header = read_header(&mut reader)?;
        let header = Header::parse(&header)?;
        Ok((header.shape(), header.descr))
    }

    pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
        let index = match self.index_per_name.get(name) {
            None => return Ok(None),
            Some(index) => *index,
        };
        // We hope that the file has not changed since first reading it.
        let zip_reader = BufReader::new(File::open(&self.path)?);
        let mut zip = zip::ZipArchive::new(zip_reader)?;
        let mut reader = zip.by_index(index)?;
        let header = read_header(&mut reader)?;
        let header = Header::parse(&header)?;
        if header.fortran_order {
            return Err(Error::Npy("fortran order not supported".to_string()));
        }
        let tensor = Tensor::from_reader(header.shape(), header.descr, &mut reader)?;
        Ok(Some(tensor))
    }
}

#[cfg(test)]
mod tests {
    use super::Header;

    #[test]
    fn parse() {
        let h = "{'descr': '<f8', 'fortran_order': False, 'shape': (128,), }";
        assert_eq!(
            Header::parse(h).unwrap(),
            Header {
                descr: crate::core::DType::F64,
                fortran_order: false,
                shape: vec![128]
            }
        );
        let h = "{'descr': '<f4', 'fortran_order': True, 'shape': (256,1,128), }";
        let h = Header::parse(h).unwrap();
        assert_eq!(
            h,
            Header {
                descr: crate::core::DType::F32,
                fortran_order: true,
                shape: vec![256, 1, 128]
            }
        );
        assert_eq!(
            h.to_string().unwrap(),
            "{'descr': '<f4', 'fortran_order': True, 'shape': (256,1,128,), }"
        );

        let h = Header {
            descr: crate::core::DType::U32,
            fortran_order: false,
            shape: vec![],
        };
        assert_eq!(
            h.to_string().unwrap(),
            "{'descr': '<u4', 'fortran_order': False, 'shape': (), }"
        );
    }
}