diffusion_rs_common/core/
pickle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
// Just enough pickle support to be able to read PyTorch checkpoints.
// This hardcodes objects that are required for tensor reading, we may want to make this a bit more
// composable/tensor agnostic at some point.
use crate::core::{DType, Error as E, Layout, Result, Tensor};
use byteorder::{LittleEndian, ReadBytesExt};
use std::collections::HashMap;
use std::io::BufRead;

const VERBOSE: bool = false;

// https://docs.juliahub.com/Pickle/LAUNc/0.1.0/opcode/
#[repr(u8)]
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum OpCode {
    // https://github.com/python/cpython/blob/ed25f097160b5cbb0c9a1f9a746d2f1bbc96515a/Lib/pickletools.py#L2123
    Proto = 0x80,
    Global = b'c',
    BinPut = b'q',
    LongBinPut = b'r',
    EmptyTuple = b')',
    Reduce = b'R',
    Mark = b'(',
    BinUnicode = b'X',
    BinInt = b'J',
    Tuple = b't',
    BinPersId = b'Q',
    BinInt1 = b'K',
    BinInt2 = b'M',
    Tuple1 = 0x85,
    Tuple2 = 0x86,
    Tuple3 = 0x87,
    NewTrue = 0x88,
    NewFalse = 0x89,
    None = b'N',
    BinGet = b'h',
    LongBinGet = b'j',
    SetItem = b's',
    SetItems = b'u',
    EmptyDict = b'}',
    Dict = b'd',
    Build = b'b',
    Stop = b'.',
    NewObj = 0x81,
    EmptyList = b']',
    BinFloat = b'G',
    Append = b'a',
    Appends = b'e',
}

// Avoid using FromPrimitive so as not to drag another dependency.
impl TryFrom<u8> for OpCode {
    type Error = u8;
    fn try_from(value: u8) -> std::result::Result<Self, Self::Error> {
        match value {
            0x80 => Ok(Self::Proto),
            b'c' => Ok(Self::Global),
            b'q' => Ok(Self::BinPut),
            b'r' => Ok(Self::LongBinPut),
            b')' => Ok(Self::EmptyTuple),
            b'R' => Ok(Self::Reduce),
            b'(' => Ok(Self::Mark),
            b'X' => Ok(Self::BinUnicode),
            b'J' => Ok(Self::BinInt),
            b't' => Ok(Self::Tuple),
            b'Q' => Ok(Self::BinPersId),
            b'K' => Ok(Self::BinInt1),
            b'M' => Ok(Self::BinInt2),
            b'N' => Ok(Self::None),
            0x85 => Ok(Self::Tuple1),
            0x86 => Ok(Self::Tuple2),
            0x87 => Ok(Self::Tuple3),
            0x88 => Ok(Self::NewTrue),
            0x89 => Ok(Self::NewFalse),
            b'h' => Ok(Self::BinGet),
            b'j' => Ok(Self::LongBinGet),
            b's' => Ok(Self::SetItem),
            b'u' => Ok(Self::SetItems),
            b'}' => Ok(Self::EmptyDict),
            b'd' => Ok(Self::EmptyDict),
            b'b' => Ok(Self::Build),
            b'.' => Ok(Self::Stop),
            0x81 => Ok(Self::NewObj),
            b']' => Ok(Self::EmptyList),
            b'G' => Ok(Self::BinFloat),
            b'a' => Ok(Self::Append),
            b'e' => Ok(Self::Appends),
            value => Err(value),
        }
    }
}

fn read_to_newline<R: BufRead>(r: &mut R) -> Result<Vec<u8>> {
    let mut data: Vec<u8> = Vec::with_capacity(32);
    r.read_until(b'\n', &mut data)?;
    data.pop();
    if data.last() == Some(&b'\r') {
        data.pop();
    }
    Ok(data)
}

#[derive(Debug, Clone, PartialEq)]
pub enum Object {
    Class {
        module_name: String,
        class_name: String,
    },
    Int(i32),
    Float(f64),
    Unicode(String),
    Bool(bool),
    None,
    Tuple(Vec<Object>),
    List(Vec<Object>),
    Mark,
    Dict(Vec<(Object, Object)>),
    Reduce {
        callable: Box<Object>,
        args: Box<Object>,
    },
    Build {
        callable: Box<Object>,
        args: Box<Object>,
    },
    PersistentLoad(Box<Object>),
}

type OResult<T> = std::result::Result<T, Object>;

impl Object {
    pub fn unicode(self) -> OResult<String> {
        match self {
            Self::Unicode(t) => Ok(t),
            _ => Err(self),
        }
    }

    pub fn reduce(self) -> OResult<(Self, Self)> {
        match self {
            Self::Reduce { callable, args } => Ok((*callable, *args)),
            _ => Err(self),
        }
    }

    pub fn none(self) -> OResult<()> {
        match self {
            Self::None => Ok(()),
            _ => Err(self),
        }
    }

    pub fn persistent_load(self) -> OResult<Self> {
        match self {
            Self::PersistentLoad(t) => Ok(*t),
            _ => Err(self),
        }
    }

    pub fn bool(self) -> OResult<bool> {
        match self {
            Self::Bool(t) => Ok(t),
            _ => Err(self),
        }
    }

    pub fn int(self) -> OResult<i32> {
        match self {
            Self::Int(t) => Ok(t),
            _ => Err(self),
        }
    }

    pub fn tuple(self) -> OResult<Vec<Self>> {
        match self {
            Self::Tuple(t) => Ok(t),
            _ => Err(self),
        }
    }

    pub fn dict(self) -> OResult<Vec<(Self, Self)>> {
        match self {
            Self::Dict(t) => Ok(t),
            _ => Err(self),
        }
    }

    pub fn class(self) -> OResult<(String, String)> {
        match self {
            Self::Class {
                module_name,
                class_name,
            } => Ok((module_name, class_name)),
            _ => Err(self),
        }
    }

    pub fn into_tensor_info(
        self,
        name: Self,
        dir_name: &std::path::Path,
    ) -> Result<Option<TensorInfo>> {
        let name = match name.unicode() {
            Ok(name) => name,
            Err(_) => return Ok(None),
        };
        let (callable, args) = match self.reduce() {
            Ok(callable_args) => callable_args,
            _ => return Ok(None),
        };
        let (callable, args) = match callable {
            Object::Class {
                module_name,
                class_name,
            } if module_name == "torch._tensor" && class_name == "_rebuild_from_type_v2" => {
                let mut args = args.tuple()?;
                let callable = args.remove(0);
                let args = args.remove(1);
                (callable, args)
            }
            Object::Class {
                module_name,
                class_name,
            } if module_name == "torch._utils" && class_name == "_rebuild_parameter" => {
                let mut args = args.tuple()?;
                args.remove(0).reduce()?
            }
            _ => (callable, args),
        };
        match callable {
            Object::Class {
                module_name,
                class_name,
            } if module_name == "torch._utils" && class_name == "_rebuild_tensor_v2" => {}
            _ => return Ok(None),
        };
        let (layout, dtype, file_path, storage_size) = rebuild_args(args)?;
        Ok(Some(TensorInfo {
            name,
            dtype,
            layout,
            path: format!("{}/{}", dir_name.to_string_lossy(), file_path),
            storage_size,
        }))
    }
}

impl TryFrom<Object> for String {
    type Error = Object;
    fn try_from(value: Object) -> std::result::Result<Self, Self::Error> {
        match value {
            Object::Unicode(s) => Ok(s),
            other => Err(other),
        }
    }
}

impl TryFrom<Object> for usize {
    type Error = Object;
    fn try_from(value: Object) -> std::result::Result<Self, Self::Error> {
        match value {
            Object::Int(s) if s >= 0 => Ok(s as usize),
            other => Err(other),
        }
    }
}

impl<T: TryFrom<Object, Error = Object>> TryFrom<Object> for Vec<T> {
    type Error = Object;
    fn try_from(value: Object) -> std::result::Result<Self, Self::Error> {
        match value {
            Object::Tuple(values) => {
                // This does not return the appropriate value in the error case but instead return
                // the object related to the first error.
                values
                    .into_iter()
                    .map(|v| T::try_from(v))
                    .collect::<std::result::Result<Vec<T>, Self::Error>>()
            }
            other => Err(other),
        }
    }
}

#[derive(Debug)]
pub struct Stack {
    stack: Vec<Object>,
    memo: HashMap<u32, Object>,
}

impl Stack {
    pub fn empty() -> Self {
        Self {
            stack: Vec::with_capacity(512),
            memo: HashMap::new(),
        }
    }

    pub fn stack(&self) -> &[Object] {
        self.stack.as_slice()
    }

    pub fn read_loop<R: BufRead>(&mut self, r: &mut R) -> Result<()> {
        loop {
            if self.read(r)? {
                break;
            }
        }
        Ok(())
    }

    pub fn finalize(mut self) -> Result<Object> {
        self.pop()
    }

    fn push(&mut self, obj: Object) {
        self.stack.push(obj)
    }

    fn pop(&mut self) -> Result<Object> {
        match self.stack.pop() {
            None => crate::bail!("unexpected empty stack"),
            Some(obj) => Ok(obj),
        }
    }

    // https://docs.juliahub.com/Pickle/LAUNc/0.1.0/opcode/#Pickle.OpCodes.BUILD
    fn build(&mut self) -> Result<()> {
        let args = self.pop()?;
        let obj = self.pop()?;
        let obj = match (obj, args) {
            (Object::Dict(mut obj), Object::Dict(mut args)) => {
                obj.append(&mut args);
                Object::Dict(obj)
            }
            (obj, args) => Object::Build {
                callable: Box::new(obj),
                args: Box::new(args),
            },
        };
        self.push(obj);
        Ok(())
    }

    fn reduce(&mut self) -> Result<()> {
        let args = self.pop()?;
        let callable = self.pop()?;
        #[allow(clippy::single_match)]
        let reduced = match &callable {
            Object::Class {
                module_name,
                class_name,
            } => {
                if module_name == "collections"
                    && (class_name == "OrderedDict" || class_name == "defaultdict")
                {
                    // TODO: have a separate ordered dict and a separate default dict.
                    Some(Object::Dict(vec![]))
                } else {
                    None
                }
            }
            _ => None,
        };
        let reduced = reduced.unwrap_or_else(|| Object::Reduce {
            callable: Box::new(callable),
            args: Box::new(args),
        });
        self.push(reduced);
        Ok(())
    }

    fn last(&mut self) -> Result<&mut Object> {
        match self.stack.last_mut() {
            None => crate::bail!("unexpected empty stack"),
            Some(obj) => Ok(obj),
        }
    }

    fn memo_get(&self, id: u32) -> Result<Object> {
        match self.memo.get(&id) {
            None => crate::bail!("missing object in memo {id}"),
            Some(obj) => {
                // Maybe we should use refcounting rather than doing potential large clones here.
                Ok(obj.clone())
            }
        }
    }

    fn memo_put(&mut self, id: u32) -> Result<()> {
        let obj = self.last()?.clone();
        self.memo.insert(id, obj);
        Ok(())
    }

    fn persistent_load(&self, id: Object) -> Result<Object> {
        Ok(Object::PersistentLoad(Box::new(id)))
    }

    fn new_obj(&self, class: Object, args: Object) -> Result<Object> {
        Ok(Object::Reduce {
            callable: Box::new(class),
            args: Box::new(args),
        })
    }

    fn pop_to_marker(&mut self) -> Result<Vec<Object>> {
        let mut mark_idx = None;
        for (idx, obj) in self.stack.iter().enumerate().rev() {
            if obj == &Object::Mark {
                mark_idx = Some(idx);
                break;
            }
        }
        match mark_idx {
            Some(mark_idx) => {
                let objs = self.stack.split_off(mark_idx + 1);
                self.stack.pop();
                Ok(objs)
            }
            None => {
                crate::bail!("marker object not found")
            }
        }
    }

    pub fn read<R: BufRead>(&mut self, r: &mut R) -> Result<bool> {
        let op_code = match OpCode::try_from(r.read_u8()?) {
            Ok(op_code) => op_code,
            Err(op_code) => {
                crate::bail!("unknown op-code {op_code}")
            }
        };
        // println!("op: {op_code:?}");
        // println!("{:?}", self.stack);
        match op_code {
            OpCode::Proto => {
                let version = r.read_u8()?;
                if VERBOSE {
                    println!("proto {version}");
                }
            }
            OpCode::Global => {
                let module_name = read_to_newline(r)?;
                let class_name = read_to_newline(r)?;
                let module_name = String::from_utf8_lossy(&module_name).to_string();
                let class_name = String::from_utf8_lossy(&class_name).to_string();
                self.push(Object::Class {
                    module_name,
                    class_name,
                })
            }
            OpCode::BinInt1 => {
                let arg = r.read_u8()?;
                self.push(Object::Int(arg as i32))
            }
            OpCode::BinInt2 => {
                let arg = r.read_u16::<LittleEndian>()?;
                self.push(Object::Int(arg as i32))
            }
            OpCode::BinInt => {
                let arg = r.read_i32::<LittleEndian>()?;
                self.push(Object::Int(arg))
            }
            OpCode::BinFloat => {
                // Somehow floats are encoded using BigEndian whereas int types use LittleEndian.
                // https://github.com/python/cpython/blob/0c80da4c14d904a367968955544dd6ae58c8101c/Lib/pickletools.py#L855
                // https://github.com/pytorch/pytorch/blob/372d078f361e726bb4ac0884ac334b04c58179ef/torch/_weights_only_unpickler.py#L243
                let arg = r.read_f64::<byteorder::BigEndian>()?;
                self.push(Object::Float(arg))
            }
            OpCode::BinUnicode => {
                let len = r.read_u32::<LittleEndian>()?;
                let mut data = vec![0u8; len as usize];
                r.read_exact(&mut data)?;
                let data = String::from_utf8(data).map_err(E::wrap)?;
                self.push(Object::Unicode(data))
            }
            OpCode::BinPersId => {
                let id = self.pop()?;
                let obj = self.persistent_load(id)?;
                self.push(obj)
            }
            OpCode::Tuple => {
                let objs = self.pop_to_marker()?;
                self.push(Object::Tuple(objs))
            }
            OpCode::Tuple1 => {
                let obj = self.pop()?;
                self.push(Object::Tuple(vec![obj]))
            }
            OpCode::Tuple2 => {
                let obj2 = self.pop()?;
                let obj1 = self.pop()?;
                self.push(Object::Tuple(vec![obj1, obj2]))
            }
            OpCode::Tuple3 => {
                let obj3 = self.pop()?;
                let obj2 = self.pop()?;
                let obj1 = self.pop()?;
                self.push(Object::Tuple(vec![obj1, obj2, obj3]))
            }
            OpCode::NewTrue => self.push(Object::Bool(true)),
            OpCode::NewFalse => self.push(Object::Bool(false)),
            OpCode::Append => {
                let value = self.pop()?;
                let pylist = self.last()?;
                if let Object::List(d) = pylist {
                    d.push(value)
                } else {
                    crate::bail!("expected a list, got {pylist:?}")
                }
            }
            OpCode::Appends => {
                let objs = self.pop_to_marker()?;
                let pylist = self.last()?;
                if let Object::List(d) = pylist {
                    d.extend(objs)
                } else {
                    crate::bail!("expected a list, got {pylist:?}")
                }
            }
            OpCode::SetItem => {
                let value = self.pop()?;
                let key = self.pop()?;
                let pydict = self.last()?;
                if let Object::Dict(d) = pydict {
                    d.push((key, value))
                } else {
                    crate::bail!("expected a dict, got {pydict:?}")
                }
            }
            OpCode::SetItems => {
                let mut objs = self.pop_to_marker()?;
                let pydict = self.last()?;
                if let Object::Dict(d) = pydict {
                    if objs.len() % 2 != 0 {
                        crate::bail!("setitems: not an even number of objects")
                    }
                    while let Some(value) = objs.pop() {
                        let key = objs.pop().unwrap();
                        d.push((key, value))
                    }
                } else {
                    crate::bail!("expected a dict, got {pydict:?}")
                }
            }
            OpCode::None => self.push(Object::None),
            OpCode::Stop => {
                return Ok(true);
            }
            OpCode::Build => self.build()?,
            OpCode::EmptyDict => self.push(Object::Dict(vec![])),
            OpCode::Dict => {
                let mut objs = self.pop_to_marker()?;
                let mut pydict = vec![];
                if objs.len() % 2 != 0 {
                    crate::bail!("setitems: not an even number of objects")
                }
                while let Some(value) = objs.pop() {
                    let key = objs.pop().unwrap();
                    pydict.push((key, value))
                }
                self.push(Object::Dict(pydict))
            }
            OpCode::Mark => self.push(Object::Mark),
            OpCode::Reduce => self.reduce()?,
            OpCode::EmptyTuple => self.push(Object::Tuple(vec![])),
            OpCode::EmptyList => self.push(Object::List(vec![])),
            OpCode::BinGet => {
                let arg = r.read_u8()?;
                let obj = self.memo_get(arg as u32)?;
                self.push(obj)
            }
            OpCode::LongBinGet => {
                let arg = r.read_u32::<LittleEndian>()?;
                let obj = self.memo_get(arg)?;
                self.push(obj)
            }
            OpCode::BinPut => {
                let arg = r.read_u8()?;
                self.memo_put(arg as u32)?
            }
            OpCode::LongBinPut => {
                let arg = r.read_u32::<LittleEndian>()?;
                self.memo_put(arg)?
            }
            OpCode::NewObj => {
                let args = self.pop()?;
                let class = self.pop()?;
                let obj = self.new_obj(class, args)?;
                self.push(obj)
            }
        }
        Ok(false)
    }
}

impl From<Object> for E {
    fn from(value: Object) -> Self {
        E::Msg(format!("conversion error on {value:?}"))
    }
}

// https://github.com/pytorch/pytorch/blob/4eac43d046ded0f0a5a5fa8db03eb40f45bf656e/torch/_utils.py#L198
// Arguments: storage, storage_offset, size, stride, requires_grad, backward_hooks
fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
    let mut args = args.tuple()?;
    let stride = Vec::<usize>::try_from(args.remove(3))?;
    let size = Vec::<usize>::try_from(args.remove(2))?;
    let offset = args.remove(1).int()? as usize;
    let storage = args.remove(0).persistent_load()?;
    let mut storage = storage.tuple()?;
    let storage_size = storage.remove(4).int()? as usize;
    let path = storage.remove(2).unicode()?;
    let (_module_name, class_name) = storage.remove(1).class()?;
    let dtype = match class_name.as_str() {
        "FloatStorage" => DType::F32,
        "DoubleStorage" => DType::F64,
        "HalfStorage" => DType::F16,
        "BFloat16Storage" => DType::BF16,
        "ByteStorage" => DType::U8,
        "LongStorage" => DType::I64,
        other => {
            crate::bail!("unsupported storage type {other}")
        }
    };
    let layout = Layout::new(crate::core::Shape::from(size), stride, offset);
    Ok((layout, dtype, path, storage_size))
}

#[derive(Debug, Clone)]
pub struct TensorInfo {
    pub name: String,
    pub dtype: DType,
    pub layout: Layout,
    pub path: String,
    pub storage_size: usize,
}

/// Read the tensor info from a .pth file.
///
/// # Arguments
/// * `file` - The path to the .pth file.
/// * `verbose` - Whether to print debug information.
/// * `key` - Optional key to retrieve `state_dict` from the pth file.
pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
    file: P,
    verbose: bool,
    key: Option<&str>,
) -> Result<Vec<TensorInfo>> {
    let file = std::fs::File::open(file)?;
    let zip_reader = std::io::BufReader::new(file);
    let mut zip = zip::ZipArchive::new(zip_reader)?;
    let zip_file_names = zip
        .file_names()
        .map(|f| f.to_string())
        .collect::<Vec<String>>();

    let mut tensor_infos = vec![];
    for file_name in zip_file_names.iter() {
        if !file_name.ends_with("data.pkl") {
            continue;
        }
        let dir_name = std::path::PathBuf::from(file_name.strip_suffix(".pkl").unwrap());
        let reader = zip.by_name(file_name)?;
        let mut reader = std::io::BufReader::new(reader);
        let mut stack = Stack::empty();
        stack.read_loop(&mut reader)?;
        let obj = stack.finalize()?;
        if VERBOSE || verbose {
            println!("{obj:#?}");
        }

        let obj = match obj {
            Object::Build { callable, args } => match *callable {
                Object::Reduce { callable, args: _ } => match *callable {
                    Object::Class {
                        module_name,
                        class_name,
                    } if module_name == "__torch__" && class_name == "Module" => *args,
                    _ => continue,
                },
                _ => continue,
            },
            obj => obj,
        };

        // If key is provided, then we need to extract the state_dict from the object.
        let obj = if let Some(key) = key {
            if let Object::Dict(key_values) = obj {
                key_values
                    .into_iter()
                    .find(|(k, _)| *k == Object::Unicode(key.to_owned()))
                    .map(|(_, v)| v)
                    .ok_or_else(|| E::Msg(format!("key {key} not found")))?
            } else {
                obj
            }
        } else {
            obj
        };

        // If the object is a dict, then we can extract the tensor info from it.
        // NOTE: We are assuming that the `obj` is state_dict by this stage.
        if let Object::Dict(key_values) = obj {
            for (name, value) in key_values.into_iter() {
                match value.into_tensor_info(name, &dir_name) {
                    Ok(Some(tensor_info)) => tensor_infos.push(tensor_info),
                    Ok(None) => {}
                    Err(err) => eprintln!("skipping: {err:?}"),
                }
            }
        }
    }
    Ok(tensor_infos)
}

/// Lazy tensor loader.
pub struct PthTensors {
    tensor_infos: HashMap<String, TensorInfo>,
    path: std::path::PathBuf,
    // We do not store a zip reader as it needs mutable access to extract data. Instead we
    // re-create a zip reader for each tensor.
}

impl PthTensors {
    pub fn new<P: AsRef<std::path::Path>>(path: P, key: Option<&str>) -> Result<Self> {
        let tensor_infos = read_pth_tensor_info(path.as_ref(), false, key)?;
        let tensor_infos = tensor_infos
            .into_iter()
            .map(|ti| (ti.name.to_string(), ti))
            .collect();
        let path = path.as_ref().to_owned();
        Ok(Self { tensor_infos, path })
    }

    pub fn tensor_infos(&self) -> &HashMap<String, TensorInfo> {
        &self.tensor_infos
    }

    pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
        use std::io::Read;
        let tensor_info = match self.tensor_infos.get(name) {
            None => return Ok(None),
            Some(tensor_info) => tensor_info,
        };
        // We hope that the file has not changed since first reading it.
        let zip_reader = std::io::BufReader::new(std::fs::File::open(&self.path)?);
        let mut zip = zip::ZipArchive::new(zip_reader)?;
        let mut reader = zip.by_name(&tensor_info.path)?;
        let is_fortran_contiguous = tensor_info.layout.is_fortran_contiguous();
        let rank = tensor_info.layout.shape().rank();

        // Reading the data is a bit tricky as it can be strided, for now only support the basic
        // case and when the tensor is fortran contiguous.
        if !tensor_info.layout.is_contiguous() && !is_fortran_contiguous {
            crate::bail!(
                "cannot retrieve non-contiguous tensors {:?}",
                tensor_info.layout
            )
        }
        let start_offset = tensor_info.layout.start_offset();
        if start_offset > 0 {
            std::io::copy(
                &mut reader.by_ref().take(start_offset as u64),
                &mut std::io::sink(),
            )?;
        }
        let tensor = Tensor::from_reader(
            tensor_info.layout.shape().clone(),
            tensor_info.dtype,
            &mut reader,
        )?;

        if rank > 1 && is_fortran_contiguous {
            // Reverse the shape, e.g. Shape(2, 3, 4) -> Shape(4, 3, 2)
            let shape_reversed: Vec<_> = tensor_info.layout.dims().iter().rev().cloned().collect();
            let tensor = tensor.reshape(shape_reversed)?;

            // Permute (transpose) the dimensions, e.g. Shape(4, 3, 2) -> Shape(2, 3, 4)
            let dim_indeces_reversed: Vec<_> = (0..rank).rev().collect();
            let tensor = tensor.permute(dim_indeces_reversed)?;
            Ok(Some(tensor))
        } else {
            Ok(Some(tensor))
        }
    }
}

/// Read all the tensors from a PyTorch pth file with a given key.
///
/// # Arguments
/// * `path` - Path to the pth file.
/// * `key` - Optional key to retrieve `state_dict` from the pth file. Sometimes the pth file
///           contains multiple objects and the state_dict is the one we are interested in.
pub fn read_all_with_key<P: AsRef<std::path::Path>>(
    path: P,
    key: Option<&str>,
) -> Result<Vec<(String, Tensor)>> {
    let pth = PthTensors::new(path, key)?;
    let tensor_names = pth.tensor_infos.keys();
    let mut tensors = Vec::with_capacity(tensor_names.len());
    for name in tensor_names {
        if let Some(tensor) = pth.get(name)? {
            tensors.push((name.to_string(), tensor))
        }
    }
    Ok(tensors)
}

/// Read all the tensors from a PyTorch pth file.
///
/// # Arguments
/// * `path` - Path to the pth file.
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
    read_all_with_key(path, None)
}