diffusion_rs_common/core/quantized/
ggml_file.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//! Support for the GGML file format.

use super::{k_quants, GgmlDType, QStorage};
use crate::core::{Device, Result};
use byteorder::{LittleEndian, ReadBytesExt};
use std::collections::HashMap;

// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.h#L37
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Magic {
    Ggjt,
    Ggla,
    Ggmf,
    Ggml,
    Ggsn,
}

impl TryFrom<u32> for Magic {
    type Error = crate::core::Error;
    fn try_from(value: u32) -> Result<Self> {
        let magic = match value {
            0x67676a74 => Self::Ggjt,
            0x67676c61 => Self::Ggla,
            0x67676d66 => Self::Ggmf,
            0x67676d6c => Self::Ggml,
            0x6767736e => Self::Ggsn,
            _ => crate::bail!("unknown magic {value:08x}"),
        };
        Ok(magic)
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VersionedMagic {
    GgmlUnversioned,
    GgmfV1,
    GgjtV1,
    GgjtV2,
    GgjtV3,
}

impl VersionedMagic {
    fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
        let magic = reader.read_u32::<LittleEndian>()?;
        let magic = Magic::try_from(magic)?;
        if magic == Magic::Ggml {
            return Ok(Self::GgmlUnversioned);
        }
        let version = reader.read_u32::<LittleEndian>()?;
        let versioned_magic = match (magic, version) {
            (Magic::Ggmf, 1) => Self::GgmfV1,
            (Magic::Ggjt, 1) => Self::GgjtV1,
            (Magic::Ggjt, 2) => Self::GgjtV2,
            (Magic::Ggjt, 3) => Self::GgjtV3,
            _ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
        };
        Ok(versioned_magic)
    }

    fn align32(&self) -> bool {
        match self {
            Self::GgmlUnversioned | Self::GgmfV1 => false,
            Self::GgjtV1 | Self::GgjtV2 | Self::GgjtV3 => true,
        }
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct HParams {
    pub n_vocab: u32,
    pub n_embd: u32,
    pub n_mult: u32,
    pub n_head: u32,
    pub n_layer: u32,
    pub n_rot: u32,
    pub ftype: u32,
}

impl HParams {
    fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
        let n_vocab = reader.read_u32::<LittleEndian>()?;
        let n_embd = reader.read_u32::<LittleEndian>()?;
        let n_mult = reader.read_u32::<LittleEndian>()?;
        let n_head = reader.read_u32::<LittleEndian>()?;
        let n_layer = reader.read_u32::<LittleEndian>()?;
        let n_rot = reader.read_u32::<LittleEndian>()?;
        let ftype = reader.read_u32::<LittleEndian>()?;
        Ok(Self {
            n_vocab,
            n_embd,
            n_mult,
            n_head,
            n_layer,
            n_rot,
            ftype,
        })
    }
}

#[derive(Debug, Clone, PartialEq)]
pub struct Vocab {
    pub token_score_pairs: Vec<(Vec<u8>, f32)>,
}

impl Vocab {
    fn read<R: std::io::Read>(reader: &mut R, n_vocab: usize) -> Result<Self> {
        // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L556
        let mut token_score_pairs = Vec::with_capacity(n_vocab);
        for _index in 0..n_vocab {
            let len = reader.read_u32::<LittleEndian>()? as usize;
            let mut word = vec![0u8; len];
            reader.read_exact(&mut word)?;
            let score = reader.read_f32::<LittleEndian>()?;
            token_score_pairs.push((word, score))
        }
        Ok(Self { token_score_pairs })
    }
}

fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>(
    raw_data: &[u8],
    size_in_bytes: usize,
    dims: Vec<usize>,
    device: &Device,
) -> Result<super::QTensor> {
    let raw_data_ptr = raw_data.as_ptr();
    let n_blocks = size_in_bytes / std::mem::size_of::<T>();
    let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
    let data: QStorage = match device {
        Device::Cpu => QStorage::Cpu(Box::new(data.to_vec())),
        Device::Metal(metal) => super::metal::load_quantized(metal, data)?,
        Device::Cuda(cuda) => super::cuda::load_quantized(cuda, data)?,
    };
    super::QTensor::new(data, dims)
}

/// Creates a [Tensor] from a raw GGML tensor.
pub fn qtensor_from_ggml(
    ggml_dtype: GgmlDType,
    raw_data: &[u8],
    dims: Vec<usize>,
    device: &Device,
) -> Result<super::QTensor> {
    let tensor_elems = dims.iter().product::<usize>();
    let block_size = ggml_dtype.block_size();
    if tensor_elems % block_size != 0 {
        crate::bail!(
            "the number of elements {tensor_elems} is not divisible by the block size {block_size}"
        )
    }
    let size_in_bytes = tensor_elems / block_size * ggml_dtype.type_size();

    match ggml_dtype {
        GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims, device),
        GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims, device),
        GgmlDType::BF16 => from_raw_data::<half::bf16>(raw_data, size_in_bytes, dims, device),
        GgmlDType::Q4_0 => {
            from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q4_1 => {
            from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q5_0 => {
            from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q5_1 => {
            from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q8_0 => {
            from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q2K => {
            from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q3K => {
            from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q4K => {
            from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q5K => {
            from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims, device)
        }
        GgmlDType::Q6K => {
            from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims, device)
        }
        _ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"),
    }
}

fn read_one_tensor<R: std::io::Seek + std::io::Read>(
    reader: &mut R,
    magic: VersionedMagic,
    device: &Device,
) -> Result<(String, super::QTensor)> {
    let n_dims = reader.read_u32::<LittleEndian>()?;
    let name_len = reader.read_u32::<LittleEndian>()?;
    let ggml_dtype = reader.read_u32::<LittleEndian>()?;
    let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?;
    let mut dims = vec![0u32; n_dims as usize];
    reader.read_u32_into::<LittleEndian>(&mut dims)?;
    // The dimensions are stored in reverse order, see for example:
    // https://github.com/ggerganov/llama.cpp/blob/b5ffb2849d23afe73647f68eec7b68187af09be6/convert.py#L969
    dims.reverse();
    let mut name = vec![0u8; name_len as usize];
    reader.read_exact(&mut name)?;
    let name = String::from_utf8_lossy(&name).into_owned();

    if magic.align32() {
        let pos = reader.stream_position()?;
        reader.seek(std::io::SeekFrom::Current(((32 - pos % 32) % 32) as i64))?;
    }
    let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
    let tensor_elems = dims.iter().product::<usize>();
    let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.block_size();
    // TODO: Mmap version to avoid copying the data around?
    let mut raw_data = vec![0u8; size_in_bytes];
    reader.read_exact(&mut raw_data)?;
    match qtensor_from_ggml(ggml_dtype, &raw_data, dims, device) {
        Ok(tensor) => Ok((name, tensor)),
        Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
    }
}

pub struct Content {
    pub magic: VersionedMagic,
    pub hparams: HParams,
    pub vocab: Vocab,
    pub tensors: HashMap<String, super::QTensor>,
    pub device: Device,
}

impl Content {
    pub fn read<R: std::io::Seek + std::io::Read>(
        reader: &mut R,
        device: &Device,
    ) -> Result<Content> {
        // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
        let last_position = reader.seek(std::io::SeekFrom::End(0))?;
        reader.seek(std::io::SeekFrom::Start(0))?;
        let magic = VersionedMagic::read(reader)?;
        let hparams = HParams::read(reader)?;
        let vocab = Vocab::read(reader, hparams.n_vocab as usize)?;
        let mut tensors = HashMap::new();

        while reader.stream_position()? != last_position {
            let (name, tensor) = read_one_tensor(reader, magic, device)?;
            tensors.insert(name, tensor);
        }
        let device = device.clone();
        Ok(Self {
            magic,
            hparams,
            vocab,
            tensors,
            device,
        })
    }

    pub fn remove(&mut self, name: &str) -> Result<super::QTensor> {
        match self.tensors.remove(name) {
            None => crate::bail!("cannot find tensor with name '{name}'"),
            Some(tensor) => Ok(tensor),
        }
    }
}