use super::utils::{
get_scale_min_k4, group_for_dequantization, group_for_quantization, make_q3_quants,
make_qkx1_quants, make_qx_quants, nearest_int,
};
use super::GgmlDType;
use crate::core::quantized::utils::{make_qkx3_quants, make_qp_quants};
use crate::core::Result;
use byteorder::{ByteOrder, LittleEndian};
use half::{bf16, f16};
use rayon::prelude::*;
pub const QK_K: usize = 256;
pub const K_SCALE_SIZE: usize = 12;
pub const QK4_0: usize = 32;
pub const QK4_1: usize = 32;
pub const QK5_0: usize = 32;
pub const QK5_1: usize = 32;
pub const QK8_0: usize = 32;
pub const QK8_1: usize = 32;
pub trait GgmlType: Sized + Clone + Send + Sync {
const DTYPE: GgmlDType;
const BLCK_SIZE: usize;
type VecDotType: GgmlType;
fn zeros() -> Self {
unsafe { std::mem::MaybeUninit::zeroed().assume_init() }
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()>;
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()>;
fn from_float_imatrix(
_xs: &[f32],
_ys: &mut [Self],
_imatrix_weights: &[f32],
_n_per_row: usize,
) -> Result<()> {
crate::bail!(
"`from_float_imatrix` is unimplemented for {:?}",
Self::DTYPE
);
}
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>;
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>;
}
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ4_0 {
pub(crate) d: f16,
pub(crate) qs: [u8; QK4_0 / 2],
}
const _: () = assert!(std::mem::size_of::<BlockQ4_0>() == 18);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ4_1 {
pub(crate) d: f16,
pub(crate) m: f16,
pub(crate) qs: [u8; QK4_1 / 2],
}
const _: () = assert!(std::mem::size_of::<BlockQ4_1>() == 20);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ5_0 {
pub(crate) d: f16,
pub(crate) qh: [u8; 4],
pub(crate) qs: [u8; QK5_0 / 2],
}
const _: () = assert!(std::mem::size_of::<BlockQ5_0>() == 22);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ5_1 {
pub(crate) d: f16,
pub(crate) m: f16,
pub(crate) qh: [u8; 4],
pub(crate) qs: [u8; QK5_1 / 2],
}
const _: () = assert!(std::mem::size_of::<BlockQ5_1>() == 24);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ8_0 {
pub(crate) d: f16,
pub(crate) qs: [i8; QK8_0],
}
const _: () = assert!(std::mem::size_of::<BlockQ8_0>() == 34);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ8_1 {
pub(crate) d: f16,
pub(crate) s: f16,
pub(crate) qs: [i8; QK8_1],
}
const _: () = assert!(std::mem::size_of::<BlockQ8_1>() == 36);
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ2K {
pub(crate) scales: [u8; QK_K / 16],
pub(crate) qs: [u8; QK_K / 4],
pub(crate) d: f16,
pub(crate) dmin: f16,
}
const _: () = assert!(QK_K / 16 + QK_K / 4 + 2 * 2 == std::mem::size_of::<BlockQ2K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ3K {
pub(crate) hmask: [u8; QK_K / 8],
pub(crate) qs: [u8; QK_K / 4],
pub(crate) scales: [u8; 12],
pub(crate) d: f16,
}
const _: () = assert!(QK_K / 8 + QK_K / 4 + 12 + 2 == std::mem::size_of::<BlockQ3K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ4K {
pub(crate) d: f16,
pub(crate) dmin: f16,
pub(crate) scales: [u8; K_SCALE_SIZE],
pub(crate) qs: [u8; QK_K / 2],
}
const _: () = assert!(QK_K / 2 + K_SCALE_SIZE + 2 * 2 == std::mem::size_of::<BlockQ4K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ5K {
pub(crate) d: f16,
pub(crate) dmin: f16,
pub(crate) scales: [u8; K_SCALE_SIZE],
pub(crate) qh: [u8; QK_K / 8],
pub(crate) qs: [u8; QK_K / 2],
}
const _: () =
assert!(QK_K / 8 + QK_K / 2 + 2 * 2 + K_SCALE_SIZE == std::mem::size_of::<BlockQ5K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ6K {
pub(crate) ql: [u8; QK_K / 2],
pub(crate) qh: [u8; QK_K / 4],
pub(crate) scales: [i8; QK_K / 16],
pub(crate) d: f16,
}
const _: () = assert!(3 * QK_K / 4 + QK_K / 16 + 2 == std::mem::size_of::<BlockQ6K>());
#[derive(Debug, Clone, PartialEq)]
#[repr(C)]
pub struct BlockQ8K {
pub(crate) d: f32,
pub(crate) qs: [i8; QK_K],
pub(crate) bsums: [i16; QK_K / 16],
}
const _: () = assert!(4 + QK_K + QK_K / 16 * 2 == std::mem::size_of::<BlockQ8K>());
impl GgmlType for BlockQ4_0 {
const DTYPE: GgmlDType = GgmlDType::Q4_0;
const BLCK_SIZE: usize = QK4_0;
type VecDotType = BlockQ8_0;
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
let qk = Self::BLCK_SIZE;
if k % qk != 0 {
crate::bail!("dequantize_row_q4_0: {k} is not divisible by {qk}")
}
let nb = k / qk;
for i in 0..nb {
let d = xs[i].d.to_f32();
for j in 0..(qk / 2) {
let x0 = (xs[i].qs[j] & 0x0F) as i16 - 8;
let x1 = (xs[i].qs[j] >> 4) as i16 - 8;
ys[i * qk + j] = (x0 as f32) * d;
ys[i * qk + j + qk / 2] = (x1 as f32) * d;
}
}
Ok(())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
let qk = Self::BLCK_SIZE;
let k = xs.len();
if k % qk != 0 {
crate::bail!("{k} is not divisible by {}", qk);
};
let nb = k / qk;
if ys.len() != nb {
crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,)
}
for (i, ys) in ys.iter_mut().enumerate() {
let mut amax = 0f32;
let mut max = 0f32;
let xs = &xs[i * qk..(i + 1) * qk];
for &x in xs.iter() {
if amax < x.abs() {
amax = x.abs();
max = x;
}
}
let d = max / -8.0;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
for (j, q) in ys.qs.iter_mut().enumerate() {
let x0 = xs[j] * id;
let x1 = xs[qk / 2 + j] * id;
let xi0 = u8::min(15, (x0 + 8.5) as u8);
let xi1 = u8::min(15, (x1 + 8.5) as u8);
*q = xi0 | (xi1 << 4)
}
}
Ok(())
}
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q4_0_q8_0(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q4_0_q8_0(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q4_0_q8_0(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
}
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let mut sum_i = 0;
for j in 0..qk / 2 {
let v0 = (xs.qs[j] & 0x0F) as i32 - 8;
let v1 = (xs.qs[j] >> 4) as i32 - 8;
sum_i += v0 * ys.qs[j] as i32 + v1 * ys.qs[j + qk / 2] as i32
}
sumf += sum_i as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
}
Ok(sumf)
}
}
impl GgmlType for BlockQ4_1 {
const DTYPE: GgmlDType = GgmlDType::Q4_1;
const BLCK_SIZE: usize = QK4_1;
type VecDotType = BlockQ8_1;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = QK8_1;
if n % qk != 0 {
crate::bail!("vec_dot_q4_1_q8_1: {n} is not divisible by {qk}")
}
let nb = n / qk;
if nb % 2 != 0 {
crate::bail!("vec_dot_q4_1_q8_1: {n}, nb is not divisible by 2")
}
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let mut sumi = 0i32;
for j in 0..qk / 2 {
let v0 = xs.qs[j] as i32 & 0x0F;
let v1 = xs.qs[j] as i32 >> 4;
sumi += (v0 * ys.qs[j] as i32) + (v1 * ys.qs[j + qk / 2] as i32);
}
sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
+ f16::to_f32(xs.m) * f16::to_f32(ys.s)
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
let qk = Self::BLCK_SIZE;
if ys.len() * qk != xs.len() {
crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,)
}
for (i, ys) in ys.iter_mut().enumerate() {
let xs = &xs[i * qk..(i + 1) * qk];
let mut min = f32::INFINITY;
let mut max = f32::NEG_INFINITY;
for &x in xs.iter() {
min = f32::min(x, min);
max = f32::max(x, max);
}
let d = (max - min) / ((1 << 4) - 1) as f32;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
ys.m = f16::from_f32(min);
for (j, q) in ys.qs.iter_mut().take(qk / 2).enumerate() {
let x0 = (xs[j] - min) * id;
let x1 = (xs[qk / 2 + j] - min) * id;
let xi0 = u8::min(15, (x0 + 0.5) as u8);
let xi1 = u8::min(15, (x1 + 0.5) as u8);
*q = xi0 | (xi1 << 4);
}
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK4_1 != 0 {
crate::bail!("dequantize_row_q4_1: {k} is not divisible by {QK4_1}");
}
let nb = k / QK4_1;
for i in 0..nb {
let d = xs[i].d.to_f32();
let m = xs[i].m.to_f32();
for j in 0..(QK4_1 / 2) {
let x0 = xs[i].qs[j] & 0x0F;
let x1 = xs[i].qs[j] >> 4;
ys[i * QK4_1 + j] = (x0 as f32) * d + m;
ys[i * QK4_1 + j + QK4_1 / 2] = (x1 as f32) * d + m;
}
}
Ok(())
}
}
impl GgmlType for BlockQ5_0 {
const DTYPE: GgmlDType = GgmlDType::Q5_0;
const BLCK_SIZE: usize = QK5_0;
type VecDotType = BlockQ8_0;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = Self::BLCK_SIZE;
if n % Self::BLCK_SIZE != 0 {
crate::bail!("vec_dot_q5_0_q8_0: {n} is not divisible by {qk}")
}
let nb = n / qk;
if nb % 2 != 0 {
crate::bail!("vec_dot_q5_0_q8_0: {n}, nb is not divisible by 2")
}
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(_n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let qh = LittleEndian::read_u32(&xs.qh);
let mut sumi = 0i32;
for j in 0..Self::BLCK_SIZE / 2 {
let xh_0 = (((qh & (1u32 << j)) >> j) << 4) as u8;
let xh_1 = ((qh & (1u32 << (j + 16))) >> (j + 12)) as u8;
let x0 = ((xs.qs[j] & 0x0F) as i32 | xh_0 as i32) - 16;
let x1 = ((xs.qs[j] >> 4) as i32 | xh_1 as i32) - 16;
sumi += (x0 * ys.qs[j] as i32) + (x1 * ys.qs[j + Self::BLCK_SIZE / 2] as i32);
}
sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
let k = xs.len();
if ys.len() * Self::BLCK_SIZE != k {
crate::bail!("size mismatch {k} {} {}", ys.len(), Self::BLCK_SIZE)
}
for (i, ys) in ys.iter_mut().enumerate() {
let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE];
let mut amax = 0f32;
let mut max = 0f32;
for &x in xs.iter() {
if amax < x.abs() {
amax = x.abs();
max = x;
}
}
let d = max / -16.;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
let mut qh = 0u32;
for j in 0..Self::BLCK_SIZE / 2 {
let x0 = xs[j] * id;
let x1 = xs[j + Self::BLCK_SIZE / 2] * id;
let xi0 = ((x0 + 16.5) as i8).min(31) as u8;
let xi1 = ((x1 + 16.5) as i8).min(31) as u8;
ys.qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
qh |= ((xi0 as u32 & 0x10) >> 4) << j;
qh |= ((xi1 as u32 & 0x10) >> 4) << (j + Self::BLCK_SIZE / 2);
}
LittleEndian::write_u32(&mut ys.qh, qh)
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK5_0 != 0 {
crate::bail!("dequantize_row_q5_0: {k} is not divisible by {QK5_0}");
}
let nb = k / QK5_0;
for i in 0..nb {
let d = xs[i].d.to_f32();
let qh: u32 = LittleEndian::read_u32(&xs[i].qh);
for j in 0..(QK5_0 / 2) {
let xh_0 = (((qh >> j) << 4) & 0x10) as u8;
let xh_1 = ((qh >> (j + 12)) & 0x10) as u8;
let x0 = ((xs[i].qs[j] & 0x0F) | xh_0) as i32 - 16;
let x1 = ((xs[i].qs[j] >> 4) | xh_1) as i32 - 16;
ys[i * QK5_0 + j] = (x0 as f32) * d;
ys[i * QK5_0 + j + QK5_0 / 2] = (x1 as f32) * d;
}
}
Ok(())
}
}
impl GgmlType for BlockQ5_1 {
const DTYPE: GgmlDType = GgmlDType::Q5_1;
const BLCK_SIZE: usize = QK5_1;
type VecDotType = BlockQ8_1;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = Self::BLCK_SIZE;
if n % Self::BLCK_SIZE != 0 {
crate::bail!("vec_dot_q5_1_q8_1: {n} is not divisible by {qk}")
}
let nb = n / qk;
if nb % 2 != 0 {
crate::bail!("vec_dot_q5_1_q8_1: {n}, nb is not divisible by 2")
}
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let qh = LittleEndian::read_u32(&xs.qh);
let mut sumi = 0i32;
for j in 0..Self::BLCK_SIZE / 2 {
let xh_0 = ((qh >> j) << 4) & 0x10;
let xh_1 = (qh >> (j + 12)) & 0x10;
let x0 = (xs.qs[j] as i32 & 0xF) | xh_0 as i32;
let x1 = (xs.qs[j] as i32 >> 4) | xh_1 as i32;
sumi += (x0 * ys.qs[j] as i32) + (x1 * ys.qs[j + Self::BLCK_SIZE / 2] as i32);
}
sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
+ f16::to_f32(xs.m) * f16::to_f32(ys.s)
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
let qk = Self::BLCK_SIZE;
if ys.len() * qk != xs.len() {
crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,)
}
for (i, ys) in ys.iter_mut().enumerate() {
let xs = &xs[i * qk..(i + 1) * qk];
let mut min = f32::INFINITY;
let mut max = f32::NEG_INFINITY;
for &x in xs.iter() {
min = f32::min(x, min);
max = f32::max(x, max);
}
let d = (max - min) / ((1 << 5) - 1) as f32;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
ys.m = f16::from_f32(min);
let mut qh = 0u32;
for (j, q) in ys.qs.iter_mut().take(qk / 2).enumerate() {
let x0 = (xs[j] - min) * id;
let x1 = (xs[qk / 2 + j] - min) * id;
let xi0 = (x0 + 0.5) as u8;
let xi1 = (x1 + 0.5) as u8;
*q = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
qh |= ((xi0 as u32 & 0x10) >> 4) << j;
qh |= ((xi1 as u32 & 0x10) >> 4) << (j + qk / 2);
}
LittleEndian::write_u32(&mut ys.qh, qh);
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK5_1 != 0 {
crate::bail!("dequantize_row_q5_1: {k} is not divisible by {QK5_1}");
}
let nb = k / QK5_1;
for i in 0..nb {
let d = xs[i].d.to_f32();
let m = xs[i].m.to_f32();
let qh: u32 = LittleEndian::read_u32(&xs[i].qh);
for j in 0..(QK5_1 / 2) {
let xh_0 = (((qh >> j) << 4) & 0x10) as u8;
let xh_1 = ((qh >> (j + 12)) & 0x10) as u8;
let x0 = (xs[i].qs[j] & 0x0F) | xh_0;
let x1 = (xs[i].qs[j] >> 4) | xh_1;
ys[i * QK5_1 + j] = (x0 as f32) * d + m;
ys[i * QK5_1 + j + QK5_1 / 2] = (x1 as f32) * d + m;
}
}
Ok(())
}
}
impl GgmlType for BlockQ8_0 {
const DTYPE: GgmlDType = GgmlDType::Q8_0;
const BLCK_SIZE: usize = QK8_0;
type VecDotType = BlockQ8_0;
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK8_0 != 0 {
crate::bail!("dequantize_row_q8_0: {k} is not divisible by {QK8_0}");
}
let nb = k / QK8_0;
for i in 0..nb {
let d = xs[i].d.to_f32();
for j in 0..QK8_0 {
ys[i * QK8_0 + j] = xs[i].qs[j] as f32 * d;
}
}
Ok(())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
let k = xs.len();
if k % Self::BLCK_SIZE != 0 {
crate::bail!("{k} is not divisible by {}", Self::BLCK_SIZE);
};
let nb = k / Self::BLCK_SIZE;
if ys.len() != nb {
crate::bail!(
"size mismatch {} {} {}",
xs.len(),
ys.len(),
Self::BLCK_SIZE
)
}
for (i, ys) in ys.iter_mut().enumerate() {
let mut amax = 0f32;
let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE];
for &x in xs.iter() {
amax = amax.max(x.abs())
}
let d = amax / ((1 << 7) - 1) as f32;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
for (y, &x) in ys.qs.iter_mut().zip(xs.iter()) {
*y = f32::round(x * id) as i8
}
}
Ok(())
}
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q8_0_q8_0(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q8_0_q8_0(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q8_0_q8_0(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = QK8_0;
if n % QK8_0 != 0 {
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
}
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let sum_i = xs
.qs
.iter()
.zip(ys.qs.iter())
.map(|(&x, &y)| x as i32 * y as i32)
.sum::<i32>();
sumf += sum_i as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d)
}
Ok(sumf)
}
}
impl GgmlType for BlockQ8_1 {
const DTYPE: GgmlDType = GgmlDType::Q8_1;
const BLCK_SIZE: usize = QK8_1;
type VecDotType = BlockQ8_1;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(_n: usize, _xs: &[Self], _ys: &[Self::VecDotType]) -> Result<f32> {
unimplemented!("no support for vec-dot on Q8_1")
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
let k = xs.len();
if ys.len() * Self::BLCK_SIZE != k {
crate::bail!("size mismatch {k} {} {}", ys.len(), Self::BLCK_SIZE)
}
for (i, ys) in ys.iter_mut().enumerate() {
let mut amax = 0f32;
let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE];
for &x in xs.iter() {
amax = amax.max(x.abs())
}
let d = amax / ((1 << 7) - 1) as f32;
let id = if d != 0f32 { 1. / d } else { 0. };
ys.d = f16::from_f32(d);
let mut sum = 0i32;
for j in 0..Self::BLCK_SIZE / 2 {
let v0 = xs[j] * id;
let v1 = xs[j + Self::BLCK_SIZE / 2] * id;
ys.qs[j] = f32::round(v0) as i8;
ys.qs[j + Self::BLCK_SIZE / 2] = f32::round(v1) as i8;
sum += ys.qs[j] as i32 + ys.qs[j + Self::BLCK_SIZE / 2] as i32;
}
ys.s = f16::from_f32(sum as f32) * ys.d;
}
Ok(())
}
fn to_float(_xs: &[Self], _ys: &mut [f32]) -> Result<()> {
unimplemented!("no support for vec-dot on Q8_1")
}
}
impl GgmlType for BlockQ2K {
const DTYPE: GgmlDType = GgmlDType::Q2K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q2k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q2k_q8k(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q2k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
}
let mut sumf = 0.0;
for (x, y) in xs.iter().zip(ys.iter()) {
let mut q2: &[_] = &x.qs;
let mut q8: &[_] = &y.qs;
let sc = &x.scales;
let mut summs = 0;
for (bsum, scale) in y.bsums.iter().zip(sc) {
summs += *bsum as i32 * ((scale >> 4) as i32);
}
let dall = y.d * x.d.to_f32();
let dmin = y.d * x.dmin.to_f32();
let mut isum = 0;
let mut is = 0;
for _ in 0..(QK_K / 128) {
let mut shift = 0;
for _ in 0..4 {
let d = (sc[is] & 0xF) as i32;
is += 1;
let mut isuml = 0;
for l in 0..16 {
isuml += q8[l] as i32 * (((q2[l] >> shift) & 3) as i32);
}
isum += d * isuml;
let d = (sc[is] & 0xF) as i32;
is += 1;
isuml = 0;
for l in 16..32 {
isuml += q8[l] as i32 * (((q2[l] >> shift) & 3) as i32);
}
isum += d * isuml;
shift += 2;
q8 = &q8[32..];
}
q2 = &q2[32..];
}
sumf += dall * isum as f32 - dmin * summs as f32;
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
const Q4SCALE: f32 = 15.0;
for (block, x) in group_for_quantization(xs, ys)? {
let mut mins: [f32; QK_K / 16] = [0.0; QK_K / 16];
let mut scales: [f32; QK_K / 16] = [0.0; QK_K / 16];
for (j, x_scale_slice) in x.chunks(16).enumerate() {
(scales[j], mins[j]) = make_qkx1_quants(3, 5, x_scale_slice);
}
let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max));
let max_min = mins.iter().fold(0.0, |max, &val| val.max(max));
if max_scale > 0.0 {
let iscale = Q4SCALE / max_scale;
for (j, scale) in scales.iter().enumerate().take(QK_K / 16) {
block.scales[j] = nearest_int(iscale * scale) as u8;
}
block.d = f16::from_f32(max_scale / Q4SCALE);
} else {
for j in 0..QK_K / 16 {
block.scales[j] = 0;
}
block.d = f16::from_f32(0.0);
}
if max_min > 0.0 {
let iscale = Q4SCALE / max_min;
for (j, scale) in block.scales.iter_mut().enumerate() {
let l = nearest_int(iscale * mins[j]) as u8;
*scale |= l << 4;
}
block.dmin = f16::from_f32(max_min / Q4SCALE);
} else {
block.dmin = f16::from_f32(0.0);
}
let mut big_l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 16 {
let d = block.d.to_f32() * (block.scales[j] & 0xF) as f32;
if d == 0.0 {
continue;
}
let dm = block.dmin.to_f32() * (block.scales[j] >> 4) as f32;
for ii in 0..16 {
let ll = nearest_int((x[16 * j + ii] + dm) / d).clamp(0, 3);
big_l[16 * j + ii] = ll as u8;
}
}
for j in (0..QK_K).step_by(128) {
for ll in 0..32 {
block.qs[j / 4 + ll] = big_l[j + ll]
| (big_l[j + ll + 32] << 2)
| (big_l[j + ll + 64] << 4)
| (big_l[j + ll + 96] << 6);
}
}
}
Ok(())
}
fn from_float_imatrix(
xs: &[f32],
ys: &mut [Self],
imatrix_weights: &[f32],
n_per_row: usize,
) -> Result<()> {
for (sblk_idx, (block, x)) in group_for_quantization(xs, ys)?.into_iter().enumerate() {
let mut mins: [f32; QK_K / 16] = [0.0; QK_K / 16];
let mut scales: [f32; QK_K / 16] = [0.0; QK_K / 16];
let mut weights: [f32; 16] = [0.0; 16];
let mut sw: [f32; QK_K / 16] = [0.0; QK_K / 16];
let mut ls: [u8; QK_K / 16] = [0; QK_K / 16];
let mut lm: [u8; QK_K / 16] = [0; QK_K / 16];
let sum_x2 = x.iter().map(|x| x * x).sum::<f32>();
let sigma2 = sum_x2 / QK_K as f32;
for (j, x_scale_slice) in x.chunks_exact(16).enumerate() {
for (l, (w_elem, x_elem)) in weights.iter_mut().zip(x_scale_slice).enumerate() {
let imatrix_row = sblk_idx % (n_per_row / QK_K);
let imatrix_w = imatrix_weights[imatrix_row * QK_K + 16 * j + l];
*w_elem = imatrix_w * (sigma2 + x_elem * x_elem).sqrt();
}
let sumw = weights.iter().sum::<f32>();
sw[j] = sumw;
(scales[j], mins[j]) =
make_qkx3_quants(3, x_scale_slice, Some(&weights), -0.9, 0.05, 36, false);
}
let d_block = make_qp_quants(QK_K / 16, 15, &scales, &mut ls, &sw);
let m_block = make_qp_quants(QK_K / 16, 15, &mins, &mut lm, &sw);
block.d = f16::from_f32(d_block);
block.dmin = f16::from_f32(m_block);
for j in 0..QK_K / 16 {
block.scales[j] = ls[j] | (lm[j] << 4);
}
let mut big_l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 16 {
let d = block.d.to_f32() * (block.scales[j] & 0xF) as f32;
if d == 0.0 {
continue;
}
let dm = block.dmin.to_f32() * (block.scales[j] >> 4) as f32;
for ii in 0..16 {
let ll = nearest_int((x[16 * j + ii] + dm) / d).clamp(0, 3);
big_l[16 * j + ii] = ll as u8;
}
}
for j in (0..QK_K).step_by(128) {
for ll in 0..32 {
block.qs[j / 4 + ll] = big_l[j + ll]
| (big_l[j + ll + 32] << 2)
| (big_l[j + ll + 64] << 4)
| (big_l[j + ll + 96] << 6);
}
}
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
for (block, y) in group_for_dequantization(xs, ys)? {
let d = block.d.to_f32();
let min = block.dmin.to_f32();
let mut is = 0;
for (y_block, qs) in y.chunks_exact_mut(128).zip(block.qs.chunks_exact(32)) {
let mut shift = 0;
let mut y_block_index = 0;
for _j in 0..4 {
let sc = block.scales[is];
is += 1;
let dl = d * (sc & 0xF) as f32;
let ml = min * (sc >> 4) as f32;
for q in &qs[..16] {
let y = dl * ((q >> shift) & 3) as f32 - ml;
y_block[y_block_index] = y;
y_block_index += 1;
}
let sc = block.scales[is];
is += 1;
let dl = d * (sc & 0xF) as f32;
let ml = min * (sc >> 4) as f32;
for q in &qs[16..] {
let y = dl * ((q >> shift) & 3) as f32 - ml;
y_block[y_block_index] = y;
y_block_index += 1;
}
shift += 2;
}
}
}
Ok(())
}
}
impl GgmlType for BlockQ3K {
const DTYPE: GgmlDType = GgmlDType::Q3K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q3k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q3k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q3k_q8k: {n} is not divisible by {QK_K}")
}
const KMASK1: u32 = 0x03030303;
const KMASK2: u32 = 0x0f0f0f0f;
let mut aux8: [i8; QK_K] = [0; QK_K];
let mut aux16: [i16; 8] = [0; 8];
let mut sums: [f32; 8] = [0.0; 8];
let mut aux32: [i32; 8] = [0; 8];
let mut auxs: [u32; 4] = [0; 4];
for (x, y) in xs.iter().zip(ys.iter()) {
let mut q3: &[u8] = &x.qs;
let hmask: &[u8] = &x.hmask;
let mut q8: &[i8] = &y.qs;
aux32.fill(0);
let mut a = &mut aux8[..];
let mut m = 1;
for _ in 0..QK_K / 128 {
a.iter_mut()
.take(32)
.zip(q3)
.for_each(|(a_val, q3_val)| *a_val = (q3_val & 3) as i8);
a.iter_mut()
.take(32)
.zip(hmask)
.for_each(|(a_val, hmask_val)| {
*a_val -= if hmask_val & m != 0 { 0 } else { 4 }
});
a = &mut a[32..];
m <<= 1;
a.iter_mut()
.take(32)
.zip(q3)
.for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 2) & 3) as i8);
a.iter_mut()
.take(32)
.zip(hmask)
.for_each(|(a_val, hmask_val)| {
*a_val -= if hmask_val & m != 0 { 0 } else { 4 }
});
a = &mut a[32..];
m <<= 1;
a.iter_mut()
.take(32)
.zip(q3)
.for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 4) & 3) as i8);
a.iter_mut()
.take(32)
.zip(hmask)
.for_each(|(a_val, hmask_val)| {
*a_val -= if hmask_val & m != 0 { 0 } else { 4 }
});
a = &mut a[32..];
m <<= 1;
a.iter_mut()
.take(32)
.zip(q3)
.for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 6) & 3) as i8);
a.iter_mut()
.take(32)
.zip(hmask)
.for_each(|(a_val, hmask_val)| {
*a_val -= if hmask_val & m != 0 { 0 } else { 4 }
});
a = &mut a[32..];
m <<= 1;
q3 = &q3[32..];
}
a = &mut aux8[..];
LittleEndian::read_u32_into(&x.scales, &mut auxs[0..3]);
let tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & KMASK2) | (((tmp >> 4) & KMASK1) << 4);
auxs[3] = ((auxs[1] >> 4) & KMASK2) | (((tmp >> 6) & KMASK1) << 4);
auxs[0] = (auxs[0] & KMASK2) | (((tmp) & KMASK1) << 4);
auxs[1] = (auxs[1] & KMASK2) | (((tmp >> 2) & KMASK1) << 4);
for aux in auxs {
for scale in aux.to_le_bytes() {
let scale = i8::from_be_bytes([scale]);
for l in 0..8 {
aux16[l] = q8[l] as i16 * a[l] as i16;
}
for l in 0..8 {
aux32[l] += (scale as i32 - 32) * aux16[l] as i32;
}
q8 = &q8[8..];
a = &mut a[8..];
for l in 0..8 {
aux16[l] = q8[l] as i16 * a[l] as i16;
}
for l in 0..8 {
aux32[l] += (scale as i32 - 32) * aux16[l] as i32;
}
q8 = &q8[8..];
a = &mut a[8..];
}
}
let d = x.d.to_f32() * y.d;
for l in 0..8 {
sums[l] += d * aux32[l] as f32;
}
}
Ok(sums.iter().sum())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
for (block, x) in group_for_quantization(xs, ys)? {
let mut scales: [f32; QK_K / 16] = [0.0; QK_K / 16];
for (j, x_scale_slice) in x.chunks_exact(16).enumerate() {
scales[j] = make_q3_quants(x_scale_slice, 4, true);
}
let mut max_scale: f32 = 0.0;
for &scale in scales.iter() {
if scale.abs() > max_scale.abs() {
max_scale = scale;
}
}
block.scales.fill(0);
if max_scale != 0.0 {
let iscale = -32.0 / max_scale;
for (j, scale) in scales.iter().enumerate() {
let l_val = nearest_int(iscale * scale);
let l_val = l_val.clamp(-32, 31) + 32;
if j < 8 {
block.scales[j] = (l_val & 0xF) as u8;
} else {
block.scales[j - 8] |= ((l_val & 0xF) << 4) as u8;
}
let l_val = l_val >> 4;
block.scales[j % 4 + 8] |= (l_val << (2 * (j / 4))) as u8;
}
block.d = f16::from_f32(1.0 / iscale);
} else {
block.d = f16::from_f32(0.0);
}
let mut l: [i8; QK_K] = [0; QK_K];
for j in 0..QK_K / 16 {
let sc = if j < 8 {
block.scales[j] & 0xF
} else {
block.scales[j - 8] >> 4
};
let sc = (sc | (((block.scales[8 + j % 4] >> (2 * (j / 4))) & 3) << 4)) as i8 - 32;
let d = block.d.to_f32() * sc as f32;
if d != 0.0 {
for ii in 0..16 {
let l_val = nearest_int(x[16 * j + ii] / d);
l[16 * j + ii] = (l_val.clamp(-4, 3) + 4) as i8;
}
}
}
block.hmask.fill(0);
let mut m = 0;
let mut hm = 1;
for ll in l.iter_mut() {
if *ll > 3 {
block.hmask[m] |= hm;
*ll -= 4;
}
m += 1;
if m == QK_K / 8 {
m = 0;
hm <<= 1;
}
}
for j in (0..QK_K).step_by(128) {
for l_val in 0..32 {
block.qs[j / 4 + l_val] = (l[j + l_val]
| (l[j + l_val + 32] << 2)
| (l[j + l_val + 64] << 4)
| (l[j + l_val + 96] << 6))
as u8;
}
}
}
Ok(())
}
fn from_float_imatrix(
xs: &[f32],
ys: &mut [Self],
imatrix_weights: &[f32],
n_per_row: usize,
) -> Result<()> {
for (sblk_idx, (block, x)) in group_for_quantization(xs, ys)?.into_iter().enumerate() {
let mut scales: [f32; QK_K / 16] = [0.0; QK_K / 16];
let mut weights: [f32; 16] = [0.0; 16];
let mut sw: [f32; QK_K / 16] = [0.0; QK_K / 16];
let mut ls: [i8; QK_K / 16] = [0; QK_K / 16];
let mut l: [i8; QK_K] = [0; QK_K];
let sum_x2 = x.iter().map(|x| x * x).sum::<f32>();
let sigma2 = 2. * sum_x2 / QK_K as f32;
for (j, x_scale_slice) in x.chunks_exact(16).enumerate() {
for (l, (w_elem, x_elem)) in weights.iter_mut().zip(x_scale_slice).enumerate() {
let imatrix_row = sblk_idx % (n_per_row / QK_K);
let imatrix_w = imatrix_weights[imatrix_row * QK_K + 16 * j + l];
*w_elem = imatrix_w * (sigma2 + x_elem * x_elem).sqrt();
}
let sumw = weights.iter().sum::<f32>();
sw[j] = sumw;
scales[j] = unsafe {
make_qx_quants(
16,
4,
x_scale_slice.as_ptr(),
l.as_mut_ptr().add(16 * j),
1,
weights.as_ptr(),
)
};
}
block.scales.fill(0);
let d_block = unsafe {
make_qx_quants(
QK_K / 16,
32,
scales.as_ptr(),
ls.as_mut_ptr(),
1,
sw.as_ptr(),
)
};
block.d = f16::from_f32(d_block);
for (j, l) in ls.iter().enumerate().take(QK_K / 16) {
if j < 8 {
block.scales[j] = (l & 0xF) as u8;
} else {
block.scales[j - 8] |= ((l & 0xF) << 4) as u8;
}
let l = l >> 4;
block.scales[j % 4 + 8] |= (l << (2 * (j / 4))) as u8;
}
for j in 0..QK_K / 16 {
let sc = if j < 8 {
block.scales[j] & 0xF
} else {
block.scales[j - 8] >> 4
};
let sc = (sc | (((block.scales[8 + j % 4] >> (2 * (j / 4))) & 3) << 4)) as i8 - 32;
let d = block.d.to_f32() * sc as f32;
if d != 0.0 {
for ii in 0..16 {
let l_val = nearest_int(x[16 * j + ii] / d);
l[16 * j + ii] = (l_val.clamp(-4, 3) + 4) as i8;
}
}
}
block.hmask.fill(0);
let mut m = 0;
let mut hm = 1;
for ll in l.iter_mut() {
if *ll > 3 {
block.hmask[m] |= hm;
*ll -= 4;
}
m += 1;
if m == QK_K / 8 {
m = 0;
hm <<= 1;
}
}
for j in (0..QK_K).step_by(128) {
for l_val in 0..32 {
block.qs[j / 4 + l_val] = (l[j + l_val]
| (l[j + l_val + 32] << 2)
| (l[j + l_val + 64] << 4)
| (l[j + l_val + 96] << 6))
as u8;
}
}
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
const KMASK1: u32 = 0x03030303;
const KMASK2: u32 = 0x0f0f0f0f;
for (block, y) in group_for_dequantization(xs, ys)? {
let mut aux = [0; 4];
LittleEndian::read_u32_into(&block.scales, &mut aux[0..3]);
let tmp = aux[2];
aux[2] = ((aux[0] >> 4) & KMASK2) | (((tmp >> 4) & KMASK1) << 4);
aux[3] = ((aux[1] >> 4) & KMASK2) | (((tmp >> 6) & KMASK1) << 4);
aux[0] = (aux[0] & KMASK2) | (((tmp) & KMASK1) << 4);
aux[1] = (aux[1] & KMASK2) | (((tmp >> 2) & KMASK1) << 4);
let scales: &mut [i8] =
unsafe { std::slice::from_raw_parts_mut(aux.as_mut_ptr() as *mut i8, 16) };
let d_all = block.d.to_f32();
let mut m = 1;
let mut is = 0;
for (y, qs) in y.chunks_exact_mut(128).zip(block.qs.chunks_exact(32)) {
let mut shift = 0;
for shift_scoped_y in y.chunks_exact_mut(32) {
for (scale_index, scale_scoped_y) in
shift_scoped_y.chunks_exact_mut(16).enumerate()
{
let dl = d_all * (scales[is] as f32 - 32.0);
for (i, inner_y) in scale_scoped_y.iter_mut().enumerate() {
let new_y = dl
* (((qs[i + 16 * scale_index] >> shift) & 3) as i8
- if (block.hmask[i + 16 * scale_index] & m) == 0 {
4
} else {
0
}) as f32;
*inner_y = new_y;
}
is += 1;
}
shift += 2;
m <<= 1;
}
}
}
Ok(())
}
}
impl GgmlType for BlockQ4K {
const DTYPE: GgmlDType = GgmlDType::Q4K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q4k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q4k_q8k(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q4k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
}
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
let mut utmp: [u32; 4] = [0; 4];
let mut scales: [u8; 8] = [0; 8];
let mut mins: [u8; 8] = [0; 8];
let mut aux8: [i8; QK_K] = [0; QK_K];
let mut aux16: [i16; 8] = [0; 8];
let mut sums: [f32; 8] = [0.0; 8];
let mut aux32: [i32; 8] = [0; 8];
let mut sumf = 0.0;
for (y, x) in ys.iter().zip(xs.iter()) {
let q4 = &x.qs;
let q8 = &y.qs;
aux32.fill(0);
let mut a = &mut aux8[..];
let mut q4 = &q4[..];
for _ in 0..QK_K / 64 {
for l in 0..32 {
a[l] = (q4[l] & 0xF) as i8;
}
a = &mut a[32..];
for l in 0..32 {
a[l] = (q4[l] >> 4) as i8;
}
a = &mut a[32..];
q4 = &q4[32..];
}
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
let uaux = utmp[1] & KMASK1;
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[2] = uaux;
utmp[0] &= KMASK1;
LittleEndian::write_u32_into(&utmp[0..2], &mut scales);
LittleEndian::write_u32_into(&utmp[2..4], &mut mins);
let mut sumi = 0;
for j in 0..QK_K / 16 {
sumi += y.bsums[j] as i32 * mins[j / 2] as i32;
}
let mut a = &mut aux8[..];
let mut q8 = &q8[..];
for scale in scales {
let scale = scale as i32;
for _ in 0..4 {
for l in 0..8 {
aux16[l] = q8[l] as i16 * a[l] as i16;
}
for l in 0..8 {
aux32[l] += scale * aux16[l] as i32;
}
q8 = &q8[8..];
a = &mut a[8..];
}
}
let d = x.d.to_f32() * y.d;
for l in 0..8 {
sums[l] += d * aux32[l] as f32;
}
let dmin = x.dmin.to_f32() * y.d;
sumf -= dmin * sumi as f32;
}
Ok(sumf + sums.iter().sum::<f32>())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
for (block, x) in group_for_quantization(xs, ys)? {
let mut mins: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut scales: [f32; QK_K / 32] = [0.0; QK_K / 32];
for (j, x_scale_slice) in x.chunks_exact(32).enumerate() {
(scales[j], mins[j]) = make_qkx1_quants(15, 5, x_scale_slice);
}
let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max));
let max_min = mins.iter().fold(0.0, |max, &val| val.max(max));
let inv_scale = if max_scale > 0.0 {
63.0 / max_scale
} else {
0.0
};
let inv_min = if max_min > 0.0 { 63.0 / max_min } else { 0.0 };
for j in 0..QK_K / 32 {
let ls = nearest_int(inv_scale * scales[j]).min(63) as u8;
let lm = nearest_int(inv_min * mins[j]).min(63) as u8;
if j < 4 {
block.scales[j] = ls;
block.scales[j + 4] = lm;
} else {
block.scales[j + 4] = (ls & 0xF) | ((lm & 0xF) << 4);
block.scales[j - 4] |= (ls >> 4) << 6;
block.scales[j] |= (lm >> 4) << 6;
}
}
block.d = f16::from_f32(max_scale / 63.0);
block.dmin = f16::from_f32(max_min / 63.0);
let mut l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 32 {
let (sc, m) = get_scale_min_k4(j, &block.scales);
let d = block.d.to_f32() * sc as f32;
if d != 0.0 {
let dm = block.dmin.to_f32() * m as f32;
for ii in 0..32 {
let l_val = nearest_int((x[32 * j + ii] + dm) / d);
l[32 * j + ii] = l_val.clamp(0, 15) as u8;
}
}
}
let q = &mut block.qs;
for j in (0..QK_K).step_by(64) {
for l_val in 0..32 {
let offset_index = (j / 64) * 32 + l_val;
q[offset_index] = l[j + l_val] | (l[j + l_val + 32] << 4);
}
}
}
Ok(())
}
fn from_float_imatrix(
xs: &[f32],
ys: &mut [Self],
imatrix_weights: &[f32],
n_per_row: usize,
) -> Result<()> {
for (sblk_idx, (block, x)) in group_for_quantization(xs, ys)?.into_iter().enumerate() {
let mut mins: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut scales: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut weights: [f32; 32] = [0.0; 32];
let mut sw: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut ls: [u8; QK_K / 32] = [0; QK_K / 32];
let mut lm: [u8; QK_K / 32] = [0; QK_K / 32];
let sum_x2 = x.iter().map(|x| x * x).sum::<f32>();
let sigma2 = 2. * sum_x2 / QK_K as f32;
for (j, x_scale_slice) in x.chunks_exact(32).enumerate() {
for (l, (w_elem, x_elem)) in weights.iter_mut().zip(x_scale_slice).enumerate() {
let imatrix_row = sblk_idx % (n_per_row / QK_K);
let imatrix_w = imatrix_weights[imatrix_row * QK_K + 32 * j + l];
*w_elem = imatrix_w * (sigma2 + x_elem * x_elem).sqrt();
}
let sumw = weights.iter().sum::<f32>();
sw[j] = sumw;
(scales[j], mins[j]) =
make_qkx3_quants(15, x_scale_slice, Some(&weights), -0.9, 0.05, 36, false);
}
let d_block = make_qp_quants(QK_K / 32, 63, &scales, &mut ls, &sw);
let m_block = make_qp_quants(QK_K / 32, 63, &mins, &mut lm, &sw);
for j in 0..QK_K / 32 {
let ls_val = ls[j];
let lm_val = lm[j];
if j < 4 {
block.scales[j] = ls_val;
block.scales[j + 4] = lm_val;
} else {
block.scales[j + 4] = (ls_val & 0xF) | ((lm_val & 0xF) << 4);
block.scales[j - 4] |= (ls_val >> 4) << 6;
block.scales[j] |= (lm_val >> 4) << 6;
}
}
block.d = f16::from_f32(d_block);
block.dmin = f16::from_f32(m_block);
let mut l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 32 {
let (sc, m) = get_scale_min_k4(j, &block.scales);
let d = block.d.to_f32() * sc as f32;
if d != 0.0 {
let dm = block.dmin.to_f32() * m as f32;
for ii in 0..32 {
let l_val = nearest_int((x[32 * j + ii] + dm) / d);
l[32 * j + ii] = l_val.clamp(0, 15) as u8;
}
}
}
let q = &mut block.qs;
for j in (0..QK_K).step_by(64) {
for l_val in 0..32 {
let offset_index = (j / 64) * 32 + l_val;
q[offset_index] = l[j + l_val] | (l[j + l_val + 32] << 4);
}
}
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
for (block, y) in group_for_dequantization(xs, ys)? {
let d = block.d.to_f32();
let min = block.dmin.to_f32();
let q = &block.qs;
let mut is = 0;
let mut ys_index = 0;
for j in (0..QK_K).step_by(64) {
let q = &q[j / 2..j / 2 + 32];
let (sc, m) = get_scale_min_k4(is, &block.scales);
let d1 = d * sc as f32;
let m1 = min * m as f32;
let (sc, m) = get_scale_min_k4(is + 1, &block.scales);
let d2 = d * sc as f32;
let m2 = min * m as f32;
for q in q {
y[ys_index] = d1 * (q & 0xF) as f32 - m1;
ys_index += 1;
}
for q in q {
y[ys_index] = d2 * (q >> 4) as f32 - m2;
ys_index += 1;
}
is += 2;
}
}
Ok(())
}
}
impl GgmlType for BlockQ5K {
const DTYPE: GgmlDType = GgmlDType::Q5K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q5k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q5k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q5k_q8k: {n} is not divisible by {QK_K}")
}
const KMASK1: u32 = 0x3f3f3f3f;
const KMASK2: u32 = 0x0f0f0f0f;
const KMASK3: u32 = 0x03030303;
let mut utmp: [u32; 4] = [0; 4];
let mut scales: [u8; 8] = [0; 8];
let mut mins: [u8; 8] = [0; 8];
let mut aux8: [i8; QK_K] = [0; QK_K];
let mut aux16: [i16; 8] = [0; 8];
let mut sums: [f32; 8] = [0.0; 8];
let mut aux32: [i32; 8] = [0; 8];
let mut sumf = 0.0;
for (y, x) in ys.iter().zip(xs.iter()) {
let q5 = &x.qs;
let hm = &x.qh;
let q8 = &y.qs;
aux32.fill(0);
let mut a = &mut aux8[..];
let mut q5 = &q5[..];
let mut m = 1u8;
for _ in 0..QK_K / 64 {
for l in 0..32 {
a[l] = (q5[l] & 0xF) as i8;
a[l] += if hm[l] & m != 0 { 16 } else { 0 };
}
a = &mut a[32..];
m <<= 1;
for l in 0..32 {
a[l] = (q5[l] >> 4) as i8;
a[l] += if hm[l] & m != 0 { 16 } else { 0 };
}
a = &mut a[32..];
m <<= 1;
q5 = &q5[32..];
}
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
let uaux = utmp[1] & KMASK1;
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
utmp[2] = uaux;
utmp[0] &= KMASK1;
LittleEndian::write_u32_into(&utmp[0..2], &mut scales);
LittleEndian::write_u32_into(&utmp[2..4], &mut mins);
let mut sumi = 0;
for j in 0..QK_K / 16 {
sumi += y.bsums[j] as i32 * mins[j / 2] as i32;
}
let mut a = &mut aux8[..];
let mut q8 = &q8[..];
for scale in scales {
let scale = scale as i32;
for _ in 0..4 {
for l in 0..8 {
aux16[l] = q8[l] as i16 * a[l] as i16;
}
for l in 0..8 {
aux32[l] += scale * aux16[l] as i32;
}
q8 = &q8[8..];
a = &mut a[8..];
}
}
let d = x.d.to_f32() * y.d;
for l in 0..8 {
sums[l] += d * aux32[l] as f32;
}
let dmin = x.dmin.to_f32() * y.d;
sumf -= dmin * sumi as f32;
}
Ok(sumf + sums.iter().sum::<f32>())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
for (block, x) in group_for_quantization(xs, ys)? {
let mut mins: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut scales: [f32; QK_K / 32] = [0.0; QK_K / 32];
for (j, x_scale_slice) in x.chunks_exact(32).enumerate() {
(scales[j], mins[j]) = make_qkx1_quants(31, 5, x_scale_slice);
}
let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max));
let max_min = mins.iter().fold(0.0, |max, &val| val.max(max));
let inv_scale = if max_scale > 0.0 {
63.0 / max_scale
} else {
0.0
};
let inv_min = if max_min > 0.0 { 63.0 / max_min } else { 0.0 };
for j in 0..QK_K / 32 {
let ls = nearest_int(inv_scale * scales[j]).min(63) as u8;
let lm = nearest_int(inv_min * mins[j]).min(63) as u8;
if j < 4 {
block.scales[j] = ls;
block.scales[j + 4] = lm;
} else {
block.scales[j + 4] = (ls & 0xF) | ((lm & 0xF) << 4);
block.scales[j - 4] |= (ls >> 4) << 6;
block.scales[j] |= (lm >> 4) << 6;
}
}
block.d = f16::from_f32(max_scale / 63.0);
block.dmin = f16::from_f32(max_min / 63.0);
let mut l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 32 {
let (sc, m) = get_scale_min_k4(j, &block.scales);
let d = block.d.to_f32() * sc as f32;
if d == 0.0 {
continue;
}
let dm = block.dmin.to_f32() * m as f32;
for ii in 0..32 {
let ll = nearest_int((x[32 * j + ii] + dm) / d);
l[32 * j + ii] = ll.clamp(0, 31) as u8;
}
}
let qh = &mut block.qh;
let ql = &mut block.qs;
qh.fill(0);
let mut m1 = 1;
let mut m2 = 2;
for n in (0..QK_K).step_by(64) {
let offset = (n / 64) * 32;
for j in 0..32 {
let mut l1 = l[n + j];
if l1 > 15 {
l1 -= 16;
qh[j] |= m1;
}
let mut l2 = l[n + j + 32];
if l2 > 15 {
l2 -= 16;
qh[j] |= m2;
}
ql[offset + j] = l1 | (l2 << 4);
}
m1 <<= 2;
m2 <<= 2;
}
}
Ok(())
}
fn from_float_imatrix(
xs: &[f32],
ys: &mut [Self],
imatrix_weights: &[f32],
n_per_row: usize,
) -> Result<()> {
for (sblk_idx, (block, x)) in group_for_quantization(xs, ys)?.into_iter().enumerate() {
let mut mins: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut scales: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut weights: [f32; 32] = [0.0; 32];
let mut sw: [f32; QK_K / 32] = [0.0; QK_K / 32];
let mut ls: [u8; QK_K / 32] = [0; QK_K / 32];
let mut lm: [u8; QK_K / 32] = [0; QK_K / 32];
let sum_x2 = x.iter().map(|x| x * x).sum::<f32>();
let sigma2 = 2. * sum_x2 / QK_K as f32;
for (j, x_scale_slice) in x.chunks_exact(32).enumerate() {
for (l, (w_elem, x_elem)) in weights.iter_mut().zip(x_scale_slice).enumerate() {
let imatrix_row = sblk_idx % (n_per_row / QK_K);
let imatrix_w = imatrix_weights[imatrix_row * QK_K + 32 * j + l];
*w_elem = imatrix_w * (sigma2 + x_elem * x_elem).sqrt();
}
let sumw = weights.iter().sum::<f32>();
sw[j] = sumw;
(scales[j], mins[j]) =
make_qkx3_quants(31, x_scale_slice, Some(&weights), -0.9, 0.05, 36, false);
}
let d_block = make_qp_quants(QK_K / 32, 63, &scales, &mut ls, &sw);
let m_block = make_qp_quants(QK_K / 32, 63, &mins, &mut lm, &sw);
for j in 0..QK_K / 32 {
let ls_val = ls[j].min(63);
let lm_val = lm[j].min(63);
if j < 4 {
block.scales[j] = ls_val;
block.scales[j + 4] = lm_val;
} else {
block.scales[j + 4] = (ls_val & 0xF) | ((lm_val & 0xF) << 4);
block.scales[j - 4] |= (ls_val >> 4) << 6;
block.scales[j] |= (lm_val >> 4) << 6;
}
}
block.d = f16::from_f32(d_block);
block.dmin = f16::from_f32(m_block);
let mut l: [u8; QK_K] = [0; QK_K];
for j in 0..QK_K / 32 {
let (sc, m) = get_scale_min_k4(j, &block.scales);
let d = block.d.to_f32() * sc as f32;
if d != 0.0 {
let dm = block.dmin.to_f32() * m as f32;
for ii in 0..32 {
let l_val = nearest_int((x[32 * j + ii] + dm) / d);
l[32 * j + ii] = l_val.clamp(0, 31) as u8;
}
}
}
let qh = &mut block.qh;
let ql = &mut block.qs;
qh.fill(0);
let mut m1 = 1;
let mut m2 = 2;
for n in (0..QK_K).step_by(64) {
let offset = (n / 64) * 32;
for j in 0..32 {
let mut l1 = l[n + j];
if l1 > 15 {
l1 -= 16;
qh[j] |= m1;
}
let mut l2 = l[n + j + 32];
if l2 > 15 {
l2 -= 16;
qh[j] |= m2;
}
ql[offset + j] = l1 | (l2 << 4);
}
m1 <<= 2;
m2 <<= 2;
}
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
for (block, y) in group_for_dequantization(xs, ys)? {
let d = block.d.to_f32();
let min = block.dmin.to_f32();
let ql = &block.qs;
let qh = &block.qh;
let mut is = 0;
let mut u1 = 1;
let mut u2 = 2;
let mut ys_index = 0;
for j in (0..QK_K).step_by(64) {
let ql = &ql[j / 2..j / 2 + 32];
let (sc, m) = get_scale_min_k4(is, &block.scales);
let d1 = d * sc as f32;
let m1 = min * m as f32;
let (sc, m) = get_scale_min_k4(is + 1, &block.scales);
let d2 = d * sc as f32;
let m2 = min * m as f32;
for (ql, qh) in ql.iter().zip(qh) {
let to_add = if qh & u1 != 0 { 16f32 } else { 0f32 };
y[ys_index] = d1 * ((ql & 0xF) as f32 + to_add) - m1;
ys_index += 1;
}
for (ql, qh) in ql.iter().zip(qh) {
let to_add = if qh & u2 != 0 { 16f32 } else { 0f32 };
y[ys_index] = d2 * ((ql >> 4) as f32 + to_add) - m2;
ys_index += 1;
}
is += 2;
u1 <<= 2;
u2 <<= 2;
}
}
Ok(())
}
}
impl GgmlType for BlockQ6K {
const DTYPE: GgmlDType = GgmlDType::Q6K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q6k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q6k_q8k(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q6k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if n % QK_K != 0 {
crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}")
}
let mut aux8 = [0i8; QK_K];
let mut aux16 = [0i16; 8];
let mut sums = [0f32; 8];
let mut aux32 = [0f32; 8];
for (x, y) in xs.iter().zip(ys.iter()) {
let q4 = &x.ql;
let qh = &x.qh;
let q8 = &y.qs;
aux32.fill(0f32);
for j in (0..QK_K).step_by(128) {
let aux8 = &mut aux8[j..];
let q4 = &q4[j / 2..];
let qh = &qh[j / 4..];
for l in 0..32 {
aux8[l] = (((q4[l] & 0xF) | ((qh[l] & 3) << 4)) as i32 - 32) as i8;
aux8[l + 32] =
(((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i32 - 32) as i8;
aux8[l + 64] = (((q4[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i32 - 32) as i8;
aux8[l + 96] =
(((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i32 - 32) as i8;
}
}
for (j, &scale) in x.scales.iter().enumerate() {
let scale = scale as f32;
let q8 = &q8[16 * j..];
let aux8 = &aux8[16 * j..];
for l in 0..8 {
aux16[l] = q8[l] as i16 * aux8[l] as i16;
}
for l in 0..8 {
aux32[l] += scale * aux16[l] as f32
}
let q8 = &q8[8..];
let aux8 = &aux8[8..];
for l in 0..8 {
aux16[l] = q8[l] as i16 * aux8[l] as i16;
}
for l in 0..8 {
aux32[l] += scale * aux16[l] as f32
}
}
let d = x.d.to_f32() * y.d;
for (sum, &a) in sums.iter_mut().zip(aux32.iter()) {
*sum += a * d;
}
}
Ok(sums.iter().sum())
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
if xs.len() != ys.len() * Self::BLCK_SIZE {
crate::bail!(
"quantize_row_q6k: size mismatch {} {} {}",
xs.len(),
ys.len(),
Self::BLCK_SIZE
)
}
let mut l = [0i8; QK_K];
let mut scales = [0f32; QK_K / 16];
let mut x = xs.as_ptr();
let l = l.as_mut_ptr();
unsafe {
for y in ys.iter_mut() {
let mut max_scale = 0f32;
let mut max_abs_scale = 0f32;
for (ib, scale_) in scales.iter_mut().enumerate() {
let scale =
make_qx_quants(16, 32, x.add(16 * ib), l.add(16 * ib), 1, std::ptr::null());
*scale_ = scale;
let abs_scale = scale.abs();
if abs_scale > max_abs_scale {
max_abs_scale = abs_scale;
max_scale = scale
}
}
let iscale = -128f32 / max_scale;
y.d = f16::from_f32(1.0 / iscale);
for (y_scale, scale) in y.scales.iter_mut().zip(scales.iter()) {
*y_scale = nearest_int(iscale * scale).min(127) as i8
}
for (j, &y_scale) in y.scales.iter().enumerate() {
let d = y.d.to_f32() * y_scale as f32;
if d == 0. {
continue;
}
for ii in 0..16 {
let ll = nearest_int(*x.add(16 * j + ii) / d).clamp(-32, 31);
*l.add(16 * j + ii) = (ll + 32) as i8
}
}
let mut ql = y.ql.as_mut_ptr();
let mut qh = y.qh.as_mut_ptr();
for j in (0..QK_K).step_by(128) {
for l_idx in 0..32 {
let q1 = *l.add(j + l_idx) & 0xF;
let q2 = *l.add(j + l_idx + 32) & 0xF;
let q3 = *l.add(j + l_idx + 64) & 0xF;
let q4 = *l.add(j + l_idx + 96) & 0xF;
*ql.add(l_idx) = (q1 | (q3 << 4)) as u8;
*ql.add(l_idx + 32) = (q2 | (q4 << 4)) as u8;
*qh.add(l_idx) = ((*l.add(j + l_idx) >> 4)
| ((*l.add(j + l_idx + 32) >> 4) << 2)
| ((*l.add(j + l_idx + 64) >> 4) << 4)
| ((*l.add(j + l_idx + 96) >> 4) << 6))
as u8;
}
ql = ql.add(64);
qh = qh.add(32);
}
x = x.add(QK_K)
}
}
Ok(())
}
fn from_float_imatrix(
xs: &[f32],
ys: &mut [Self],
imatrix_weights: &[f32],
n_per_row: usize,
) -> Result<()> {
if xs.len() != ys.len() * Self::BLCK_SIZE {
crate::bail!(
"quantize_row_q6k: size mismatch {} {} {}",
xs.len(),
ys.len(),
Self::BLCK_SIZE
)
}
let mut l = [0i8; QK_K];
let mut scales = [0f32; QK_K / 16];
let mut x = xs.as_ptr();
let imatrix_weights = imatrix_weights.as_ptr();
let l = l.as_mut_ptr();
unsafe {
for (sblk_idx, y) in ys.iter_mut().enumerate() {
let mut max_scale = 0f32;
let mut max_abs_scale = 0f32;
for (ib, scale_) in scales.iter_mut().enumerate() {
let imatrix_row = sblk_idx % (n_per_row / QK_K);
let scale = make_qx_quants(
16,
32,
x.add(16 * ib),
l.add(16 * ib),
1,
imatrix_weights.add(QK_K * imatrix_row + 16 * ib),
);
*scale_ = scale;
let abs_scale = scale.abs();
if abs_scale > max_abs_scale {
max_abs_scale = abs_scale;
max_scale = scale
}
}
let iscale = -128f32 / max_scale;
y.d = f16::from_f32(1.0 / iscale);
for (y_scale, scale) in y.scales.iter_mut().zip(scales.iter()) {
*y_scale = nearest_int(iscale * scale).min(127) as i8
}
for (j, &y_scale) in y.scales.iter().enumerate() {
let d = y.d.to_f32() * y_scale as f32;
if d == 0. {
continue;
}
for ii in 0..16 {
let ll = nearest_int(*x.add(16 * j + ii) / d).clamp(-32, 31);
*l.add(16 * j + ii) = (ll + 32) as i8
}
}
let mut ql = y.ql.as_mut_ptr();
let mut qh = y.qh.as_mut_ptr();
for j in (0..QK_K).step_by(128) {
for l_idx in 0..32 {
let q1 = *l.add(j + l_idx) & 0xF;
let q2 = *l.add(j + l_idx + 32) & 0xF;
let q3 = *l.add(j + l_idx + 64) & 0xF;
let q4 = *l.add(j + l_idx + 96) & 0xF;
*ql.add(l_idx) = (q1 | (q3 << 4)) as u8;
*ql.add(l_idx + 32) = (q2 | (q4 << 4)) as u8;
*qh.add(l_idx) = ((*l.add(j + l_idx) >> 4)
| ((*l.add(j + l_idx + 32) >> 4) << 2)
| ((*l.add(j + l_idx + 64) >> 4) << 4)
| ((*l.add(j + l_idx + 96) >> 4) << 6))
as u8;
}
ql = ql.add(64);
qh = qh.add(32);
}
x = x.add(QK_K)
}
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK_K != 0 {
crate::bail!("dequantize_row_q6k: {k} is not divisible by {QK_K}")
}
for (idx_x, x) in xs.iter().enumerate() {
let d = x.d.to_f32();
let ql = &x.ql;
let qh = &x.qh;
let sc = &x.scales;
for n in (0..QK_K).step_by(128) {
let idx = n / 128;
let ys = &mut ys[idx_x * QK_K + n..];
let sc = &sc[8 * idx..];
let ql = &ql[64 * idx..];
let qh = &qh[32 * idx..];
for l in 0..32 {
let is = l / 16;
let q1 = ((ql[l] & 0xF) | ((qh[l] & 3) << 4)) as i8 - 32;
let q2 = ((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i8 - 32;
let q3 = ((ql[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i8 - 32;
let q4 = ((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i8 - 32;
ys[l] = d * sc[is] as f32 * q1 as f32;
ys[l + 32] = d * sc[is + 2] as f32 * q2 as f32;
ys[l + 64] = d * sc[is + 4] as f32 * q3 as f32;
ys[l + 96] = d * sc[is + 6] as f32 * q4 as f32;
}
}
}
Ok(())
}
}
impl GgmlType for BlockQ8K {
const DTYPE: GgmlDType = GgmlDType::Q8K;
const BLCK_SIZE: usize = QK_K;
type VecDotType = BlockQ8K;
#[allow(unreachable_code)]
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
#[cfg(target_feature = "avx")]
return super::avx::vec_dot_q8k_q8k(n, xs, ys);
#[cfg(target_feature = "neon")]
return super::neon::vec_dot_q8k_q8k(n, xs, ys);
#[cfg(target_feature = "simd128")]
return super::simd128::vec_dot_q8k_q8k(n, xs, ys);
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
let qk = QK_K;
if n % QK_K != 0 {
crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}")
}
let mut sumf = 0f32;
for (xs, ys) in xs.iter().zip(ys.iter()) {
let sum_i = xs
.qs
.iter()
.zip(ys.qs.iter())
.map(|(&x, &y)| x as i32 * y as i32)
.sum::<i32>();
sumf += sum_i as f32 * xs.d * ys.d
}
Ok(sumf)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
let k = xs.len();
if k % QK_K != 0 {
crate::bail!("quantize_row_q8k: {k} is not divisible by {QK_K}")
}
for (i, y) in ys.iter_mut().enumerate() {
let mut max = 0f32;
let mut amax = 0f32;
let xs = &xs[i * QK_K..(i + 1) * QK_K];
for &x in xs.iter() {
if amax < x.abs() {
amax = x.abs();
max = x;
}
}
if amax == 0f32 {
y.d = 0f32;
y.qs.fill(0)
} else {
let iscale = -128f32 / max;
for (j, q) in y.qs.iter_mut().enumerate() {
let v = (iscale * xs[j]).round();
*q = v.min(127.) as i8
}
for j in 0..QK_K / 16 {
let mut sum = 0i32;
for ii in 0..16 {
sum += y.qs[j * 16 + ii] as i32
}
y.bsums[j] = sum as i16
}
y.d = 1.0 / iscale
}
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
let k = ys.len();
if k % QK_K != 0 {
crate::bail!("dequantize_row_q8k: {k} is not divisible by {QK_K}")
}
for (i, x) in xs.iter().enumerate() {
for (j, &q) in x.qs.iter().enumerate() {
ys[i * QK_K + j] = x.d * q as f32
}
}
Ok(())
}
}
pub fn matmul<T: GgmlType>(
mkn: (usize, usize, usize),
lhs: &[f32],
rhs_t: &[T],
dst: &mut [f32],
) -> Result<()> {
let (m, k, n) = mkn;
if m * k != lhs.len() {
crate::bail!("unexpected lhs length {} {mkn:?}", lhs.len());
}
let k_in_lhs_blocks = k.div_ceil(T::BLCK_SIZE);
let k_in_rhs_blocks = k.div_ceil(T::VecDotType::BLCK_SIZE);
let mut lhs_b = vec![T::VecDotType::zeros(); m * k_in_lhs_blocks];
for row_idx in 0..m {
let lhs_b = &mut lhs_b[row_idx * k_in_lhs_blocks..(row_idx + 1) * k_in_lhs_blocks];
let lhs = &lhs[row_idx * k..(row_idx + 1) * k];
T::VecDotType::from_float(lhs, lhs_b)?
}
let lhs_b = lhs_b.as_slice();
for row_idx in 0..m {
let lhs_row = &lhs_b[row_idx * k_in_lhs_blocks..(row_idx + 1) * k_in_lhs_blocks];
let dst_row = &mut dst[row_idx * n..(row_idx + 1) * n];
let result: Result<Vec<_>> = dst_row
.into_par_iter()
.enumerate()
.with_min_len(128)
.with_max_len(512)
.map(|(col_idx, dst)| {
let rhs_col = &rhs_t[col_idx * k_in_rhs_blocks..(col_idx + 1) * k_in_rhs_blocks];
T::vec_dot(k, rhs_col, lhs_row).map(|value| *dst = value)
})
.collect();
result?;
}
Ok(())
}
impl GgmlType for f32 {
const DTYPE: GgmlDType = GgmlDType::F32;
const BLCK_SIZE: usize = 1;
type VecDotType = f32;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if xs.len() < n {
crate::bail!("size mismatch {} < {n}", xs.len())
}
if ys.len() < n {
crate::bail!("size mismatch {} < {n}", ys.len())
}
let mut res = 0f32;
unsafe { crate::core::cpu::vec_dot_f32(xs.as_ptr(), ys.as_ptr(), &mut res, n) };
Ok(res)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
ys.copy_from_slice(xs);
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
ys.copy_from_slice(xs);
Ok(())
}
}
impl GgmlType for f16 {
const DTYPE: GgmlDType = GgmlDType::F16;
const BLCK_SIZE: usize = 1;
type VecDotType = f16;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if xs.len() < n {
crate::bail!("size mismatch {} < {n}", xs.len())
}
if ys.len() < n {
crate::bail!("size mismatch {} < {n}", ys.len())
}
let mut res = 0f32;
unsafe { crate::core::cpu::vec_dot_f16(xs.as_ptr(), ys.as_ptr(), &mut res, n) };
Ok(res)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
for (x, y) in xs.iter().zip(ys.iter_mut()) {
*y = f16::from_f32(*x)
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
for (x, y) in xs.iter().zip(ys.iter_mut()) {
*y = x.to_f32()
}
Ok(())
}
}
impl GgmlType for bf16 {
const DTYPE: GgmlDType = GgmlDType::BF16;
const BLCK_SIZE: usize = 1;
type VecDotType = bf16;
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
Self::vec_dot_unopt(n, xs, ys)
}
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
if xs.len() < n {
crate::bail!("size mismatch {} < {n}", xs.len())
}
if ys.len() < n {
crate::bail!("size mismatch {} < {n}", ys.len())
}
let mut res = 0f32;
unsafe { crate::core::cpu::vec_dot_bf16(xs.as_ptr(), ys.as_ptr(), &mut res, n) };
Ok(res)
}
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
for (x, y) in xs.iter().zip(ys.iter_mut()) {
*y = bf16::from_f32(*x)
}
Ok(())
}
fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> {
if xs.len() != ys.len() {
crate::bail!("size mismatch {} {}", xs.len(), ys.len());
}
for (x, y) in xs.iter().zip(ys.iter_mut()) {
*y = x.to_f32()
}
Ok(())
}
}