diffusion_rs_common/core/tensor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
//! Tensors are N-dimensional matrixes of elements using a single data type.
#![allow(clippy::redundant_closure_call)]
use crate::bail;
use crate::core::backend::{BackendDevice, BackendStorage};
use crate::core::op::{BackpropOp, BinaryOp, CmpOp, Op, ReduceOp, UnaryOp};
use crate::core::scalar::TensorOrScalar;
use crate::core::shape::{Dim, Dims};
use crate::core::{storage::Storage, DType, Device, Error, Layout, Result, Shape};
use std::sync::{Arc, RwLock};
/// Unique identifier for tensors.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct TensorId(usize);
impl TensorId {
fn new() -> Self {
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
use std::sync::atomic;
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
}
}
pub struct Tensor_ {
id: TensorId,
// As we provide inner mutability on the tensor content, the alternatives are:
// - Using a mutex, this would have the highest cost when retrieving the storage but would
// prevent errors when concurrent access takes place. Mutex would also be subject to
// deadlocks for example using the current code if the same tensor is used twice by a single
// binary op.
// - Using a refcell unsafe cell would have some intermediary cost, borrow checking would be
// verified dynamically, but the resulting tensors would not be send or sync.
// - Using an unsafe cell would have the lowest cost but undefined behavior on concurrent
// accesses.
// Ideally, we would use Arc<Storage> for tensors on which we don't plan on modifying the data
// and Arc<Mutex<Storage>> for tensors where the data could be modified, e.g. variables but
// that's tricky to encode in the current setup.
storage: Arc<RwLock<Storage>>,
layout: Layout,
op: BackpropOp,
is_variable: bool,
dtype: DType,
device: Device,
}
impl AsRef<Tensor> for Tensor {
fn as_ref(&self) -> &Tensor {
self
}
}
// Tensors are refcounted so that cloning is cheap when building the op graph.
// Storages are also refcounted independently so that its possible to avoid
// copying the storage for operations that only modify the shape or stride.
#[derive(Clone)]
/// The core struct for manipulating tensors.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, DType, Device};
///
/// let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
/// let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?;
///
/// let c = a.matmul(&b)?;
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
///
/// Tensors are reference counted with [`Arc`] so cloning them is cheap.
pub struct Tensor(Arc<Tensor_>);
impl std::ops::Deref for Tensor {
type Target = Tensor_;
fn deref(&self) -> &Self::Target {
self.0.as_ref()
}
}
macro_rules! unary_op {
($fn_name:ident, $op_name:ident) => {
pub fn $fn_name(&self) -> Result<Self> {
let shape = self.shape();
if shape.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self
.storage()
.unary_impl::<crate::core::op::$op_name>(self.layout())?;
let op = BackpropOp::new1(self, |s| Op::Unary(s, UnaryOp::$op_name));
Ok(from_storage(storage, shape.clone(), op, false))
}
};
}
macro_rules! binary_op {
($fn_name:ident, $op_name:ident) => {
pub fn $fn_name(&self, rhs: &Self) -> Result<Self> {
let shape = self.same_shape_binary_op(rhs, stringify!($fn_name))?;
if shape.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().binary_impl::<crate::core::op::$op_name>(
&*rhs.storage(),
self.layout(),
rhs.layout(),
)?;
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::Binary(t1, t2, BinaryOp::$op_name));
Ok(from_storage(storage, shape.clone(), op, false))
}
};
}
macro_rules! binary_op_scalar {
($fn_name:ident, $op_name:ident) => {
pub fn $fn_name<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
let rhs = match rhs.to_tensor_scalar()? {
crate::core::scalar::TensorScalar::Tensor(rhs) => rhs,
crate::core::scalar::TensorScalar::Scalar(rhs) => rhs
.to_dtype(self.dtype())?
.to_device(self.device())?
.broadcast_as(self.shape())?,
};
let shape = self.same_shape_binary_op(&rhs, stringify!($fn_name))?;
if self.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().binary_impl::<crate::core::op::$op_name>(
&*rhs.storage(),
self.layout(),
rhs.layout(),
)?;
let op = BackpropOp::new2(self, &rhs, |t1, t2| Op::Binary(t1, t2, BinaryOp::$op_name));
Ok(from_storage(storage, shape.clone(), op, false))
}
};
}
macro_rules! broadcast_binary_op {
($fn_name:ident, $inner_fn_name:ident) => {
pub fn $fn_name(&self, rhs: &Self) -> Result<Self> {
let lhs = self;
let shape = lhs
.shape()
.broadcast_shape_binary_op(rhs.shape(), stringify!($fn_name))?;
let l_broadcast = shape != *lhs.shape();
let r_broadcast = shape != *rhs.shape();
match (l_broadcast, r_broadcast) {
(true, true) => lhs
.broadcast_as(&shape)?
.$inner_fn_name(&rhs.broadcast_as(&shape)?),
(false, true) => lhs.$inner_fn_name(&rhs.broadcast_as(&shape)?),
(true, false) => lhs.broadcast_as(&shape)?.$inner_fn_name(rhs),
(false, false) => lhs.$inner_fn_name(rhs),
}
}
};
}
/// Creates a fresh tensor structure based on a storage and a shape, this uses contiguous strides.
pub(crate) fn from_storage<S: Into<Shape>>(
storage: Storage,
shape: S,
op: BackpropOp,
is_variable: bool,
) -> Tensor {
let dtype = storage.dtype();
let device = storage.device();
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: Arc::new(RwLock::new(storage)),
layout: Layout::contiguous(shape),
op,
is_variable,
dtype,
device,
};
Tensor(Arc::new(tensor_))
}
/// Creates a fresh tensor structure based on a storage and a shape, this uses contiguous strides. This has a BackpropOp:none().
pub fn from_storage_no_op<S: Into<Shape>>(storage: Storage, shape: S, is_variable: bool) -> Tensor {
let dtype = storage.dtype();
let device = storage.device();
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: Arc::new(RwLock::new(storage)),
layout: Layout::contiguous(shape),
op: BackpropOp::none(),
is_variable,
dtype,
device,
};
Tensor(Arc::new(tensor_))
}
impl Tensor {
pub(crate) fn ones_impl<S: Into<Shape>>(
shape: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let none = BackpropOp::none();
let shape = shape.into();
let storage = device.ones(&shape, dtype)?;
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor filled with ones.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, DType, Device};
/// let a = Tensor::ones((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::from_slice(&[1.0f32, 1.0, 1.0, 1.0, 1.0, 1.0], (2, 3), &Device::Cpu)?;
/// // a == b
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> {
Self::ones_impl(shape, dtype, device, false)
}
/// Creates a new tensor filled with ones with same shape, dtype, and device as the other tensor.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = a.ones_like()?;
/// // b == a + 1
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn ones_like(&self) -> Result<Self> {
Tensor::ones(self.shape(), self.dtype(), self.device())
}
// Do not expose outside of the crate, the `is_variable=true` case should only be accessed from
// the variable module.
pub(crate) fn zeros_impl<S: Into<Shape>>(
shape: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let none = BackpropOp::none();
let shape = shape.into();
let storage = device.zeros(&shape, dtype)?;
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor filled with zeros.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::from_slice(&[0.0f32, 0.0, 0.0, 0.0, 0.0, 0.0], (2, 3), &Device::Cpu)?;
/// // a == b
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> {
Self::zeros_impl(shape, dtype, device, false)
}
/// Creates a new tensor filled with ones with same shape, dtype, and device as the other
/// tensor.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = a.zeros_like()?;
/// // b is on CPU f32.
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn zeros_like(&self) -> Result<Self> {
Tensor::zeros(self.shape(), self.dtype(), self.device())
}
// Do not expose outside of the crate, the `is_variable=true` case should only be accessed from
// the variable module.
pub(crate) unsafe fn empty_impl<S: Into<Shape>>(
shape: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let none = BackpropOp::none();
let shape = shape.into();
let storage = device.alloc_uninit(&shape, dtype)?;
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor filled with uninitialized memory.
///
/// # Safety
/// This returns uninitialized memory.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, DType, Device};
/// let a = unsafe { Tensor::empty((2, 3), DType::F32, &Device::Cpu)? };
/// // a == b
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub unsafe fn empty<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> {
Self::empty_impl(shape, dtype, device, false)
}
/// Creates a new tensor filled with uninitialized memory of the same shape, dtype, and device as the other
/// tensor.
///
/// # Safety
/// This returns uninitialized memory.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = unsafe { a.empty_like()? };
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub unsafe fn empty_like(&self) -> Result<Self> {
Tensor::empty(self.shape(), self.dtype(), self.device())
}
pub(crate) fn rand_impl<S: Into<Shape>, T: crate::core::FloatDType>(
lo: T,
up: T,
s: S,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let s = s.into();
let storage = device.rand_uniform(lo, up, &s)?;
let none = BackpropOp::none();
Ok(from_storage(storage, s, none, is_variable))
}
pub(crate) fn rand_f64_impl<S: Into<Shape>>(
lo: f64,
up: f64,
s: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let s = s.into();
let storage = device.rand_uniform_f64(lo, up, &s, dtype)?;
let none = BackpropOp::none();
Ok(from_storage(storage, s, none, is_variable))
}
/// Creates a new tensor initialized with values sampled uniformly between `lo` and `up`.
pub fn rand<S: Into<Shape>, T: crate::core::FloatDType>(
lo: T,
up: T,
s: S,
device: &Device,
) -> Result<Self> {
Self::rand_impl(lo, up, s, device, false)
}
pub fn rand_like(&self, lo: f64, up: f64) -> Result<Self> {
Tensor::rand_f64_impl(lo, up, self.shape(), self.dtype(), self.device(), false)
}
pub(crate) fn randn_impl<S: Into<Shape>, T: crate::core::FloatDType>(
mean: T,
std: T,
s: S,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let s = s.into();
let storage = device.rand_normal(mean, std, &s)?;
let none = BackpropOp::none();
Ok(from_storage(storage, s, none, is_variable))
}
pub(crate) fn randn_f64_impl<S: Into<Shape>>(
mean: f64,
std: f64,
s: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let s = s.into();
let storage = device.rand_normal_f64(mean, std, &s, dtype)?;
let none = BackpropOp::none();
Ok(from_storage(storage, s, none, is_variable))
}
pub fn randn_like(&self, mean: f64, stdev: f64) -> Result<Self> {
Tensor::randn_f64_impl(
mean,
stdev,
self.shape(),
self.dtype(),
self.device(),
false,
)
}
/// Creates a new tensor initialized with values sampled from a normal distribution with the
/// specified `mean` and standard deviation `std`.
pub fn randn<S: Into<Shape>, T: crate::core::FloatDType>(
mean: T,
std: T,
s: S,
device: &Device,
) -> Result<Self> {
Self::randn_impl(mean, std, s, device, false)
}
pub(crate) fn new_impl<A: crate::core::device::NdArray>(
array: A,
shape: Shape,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let n: usize = shape.elem_count();
let buffer_size: usize = array.shape()?.elem_count();
if buffer_size != n {
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
}
let storage = device.storage(array)?;
let none = BackpropOp::none();
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor on the specified device using the content and shape of the input.
pub fn new<A: crate::core::device::NdArray>(array: A, device: &Device) -> Result<Self> {
let shape = array.shape()?;
Self::new_impl(array, shape, device, false)
}
/// Returns a new tensor with all the elements having the same specified value. Note that
/// the tensor is not contiguous so you would have to call `.contiguous()` on it if needed.
///```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::full(3.5, (2, 4), &Device::Cpu)?;
///
/// assert_eq!(a.to_vec2::<f64>()?, &[
/// [3.5, 3.5, 3.5, 3.5],
/// [3.5, 3.5, 3.5, 3.5],
/// ]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
pub fn full<D: crate::core::WithDType, S: Into<Shape>>(
value: D,
shape: S,
device: &Device,
) -> Result<Self> {
Self::from_vec_impl(vec![value], (), device, false)?.broadcast_as(shape)
}
/// Creates a new 1D tensor from an iterator.
///```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::from_iter( [1.0, 2.0, 3.0, 4.0].into_iter(), &Device::Cpu)?;
///
/// assert_eq!(a.to_vec1::<f64>()?, &[1.0, 2.0, 3.0, 4.0]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn from_iter<D: crate::core::WithDType>(
iter: impl IntoIterator<Item = D>,
device: &Device,
) -> Result<Self> {
let data = iter.into_iter().collect::<Vec<_>>();
let len = data.len();
Self::from_vec_impl(data, len, device, false)
}
/// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common
/// difference `1` from `start`.
///```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::arange(2., 5., &Device::Cpu)?;
///
/// assert_eq!(a.to_vec1::<f64>()?, &[2., 3., 4.]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn arange<D: crate::core::WithDType>(start: D, end: D, device: &Device) -> Result<Self> {
Self::arange_step(start, end, D::one(), device)
}
/// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common
/// difference `step` from `start`.
///```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::arange_step(2.0, 4.0, 0.5, &Device::Cpu)?;
///
/// assert_eq!(a.to_vec1::<f64>()?, &[2.0, 2.5, 3.0, 3.5]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn arange_step<D: crate::core::WithDType>(
start: D,
end: D,
step: D,
device: &Device,
) -> Result<Self> {
if D::is_zero(&step) {
bail!("step cannot be zero")
}
let mut data = vec![];
let mut current = start;
if step >= D::zero() {
while current < end {
data.push(current);
current += step;
}
} else {
while current > end {
data.push(current);
current += step;
}
}
let len = data.len();
Self::from_vec_impl(data, len, device, false)
}
pub(crate) fn from_vec_impl<S: Into<Shape>, D: crate::core::WithDType>(
data: Vec<D>,
shape: S,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let shape = shape.into();
let buffer_size = data.len();
if buffer_size != shape.elem_count() {
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
}
let storage = device.storage_owned(data)?;
let none = BackpropOp::none();
Ok(from_storage(storage, shape, none, is_variable))
}
/// Creates a new tensor initialized with values from the input vector. The number of elements
/// in this vector must be the same as the number of elements defined by the shape.
/// If the device is cpu, no data copy is made.
///```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::from_vec(vec!{1., 2., 3., 4., 5., 6.}, (2, 3), &Device::Cpu)?;
///
/// assert_eq!(a.to_vec2::<f64>()?, &[
/// [1., 2., 3.],
/// [4., 5., 6.]
/// ]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn from_vec<S: Into<Shape>, D: crate::core::WithDType>(
data: Vec<D>,
shape: S,
device: &Device,
) -> Result<Self> {
Self::from_vec_impl(data, shape, device, false)
}
/// Creates a new tensor initialized with values from the input slice. The number of elements
/// in this vector must be the same as the number of elements defined by the shape.
///```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let values = vec![1., 2., 3., 4., 5., 6., 7., 8.];
/// let a = Tensor::from_slice(&values[1..7], (2, 3), &Device::Cpu)?;
///
/// assert_eq!(a.to_vec2::<f64>()?, &[
/// [2., 3., 4.],
/// [5., 6., 7.]
/// ]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn from_slice<S: Into<Shape>, D: crate::core::WithDType>(
array: &[D],
shape: S,
device: &Device,
) -> Result<Self> {
let shape = shape.into();
let n: usize = shape.elem_count();
let buffer_size: usize = array.len();
if buffer_size != n {
return Err(Error::ShapeMismatch { buffer_size, shape }.bt());
}
let storage = device.storage_from_slice(array)?;
let none = BackpropOp::none();
Ok(from_storage(storage, shape, none, false))
}
pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> {
let lhs = self.shape();
let rhs = rhs.shape();
if lhs != rhs {
Err(Error::ShapeMismatchBinaryOp {
lhs: lhs.clone(),
rhs: rhs.clone(),
op,
}
.bt())
} else {
Ok(lhs)
}
}
/// Returns true if the computation graph should track this op, that is if it is
/// a variable or if it has some variable as dependencies.
pub fn track_op(&self) -> bool {
self.is_variable || self.op.is_some()
}
// TODO: Also make an inplace version or a pre-allocated? This could be tricky
// if this can create cycles in the compute graph.
binary_op!(add, Add);
binary_op!(mul, Mul);
binary_op!(sub, Sub);
binary_op!(div, Div);
binary_op_scalar!(maximum, Maximum);
binary_op_scalar!(minimum, Minimum);
broadcast_binary_op!(broadcast_add, add);
broadcast_binary_op!(broadcast_mul, mul);
broadcast_binary_op!(broadcast_sub, sub);
broadcast_binary_op!(broadcast_div, div);
broadcast_binary_op!(broadcast_maximum, maximum);
broadcast_binary_op!(broadcast_minimum, minimum);
broadcast_binary_op!(broadcast_eq, eq);
broadcast_binary_op!(broadcast_ne, ne);
broadcast_binary_op!(broadcast_lt, lt);
broadcast_binary_op!(broadcast_le, le);
broadcast_binary_op!(broadcast_gt, gt);
broadcast_binary_op!(broadcast_ge, ge);
unary_op!(recip, Recip);
unary_op!(neg, Neg);
unary_op!(exp, Exp);
unary_op!(log, Log);
unary_op!(sin, Sin);
unary_op!(cos, Cos);
unary_op!(tanh, Tanh);
unary_op!(abs, Abs);
unary_op!(sqr, Sqr);
unary_op!(sqrt, Sqrt);
unary_op!(gelu, Gelu);
unary_op!(gelu_erf, GeluErf);
unary_op!(erf, Erf);
unary_op!(relu, Relu);
unary_op!(silu, Silu);
unary_op!(ceil, Ceil);
unary_op!(floor, Floor);
unary_op!(round, Round);
unary_op!(sign, Sign);
/// Round element of the input tensor to the nearest integer.
///
/// If the number of decimals is negative, it specifies the number of positions to the left of
/// the decimal point.
pub fn round_to(&self, decimals: i32) -> Result<Self> {
let mult = 10f64.powi(decimals);
(self * mult)?.round()? * (1f64 / mult)
}
/// Retrieves the single scalar value hold in the tensor. If the tensor contains multiple
/// dimensions, an error is returned instead.
pub fn to_scalar<S: crate::core::WithDType>(&self) -> Result<S> {
if self.rank() != 0 {
Err(Error::UnexpectedNumberOfDims {
expected: 0,
got: self.rank(),
shape: self.shape().clone(),
}
.bt())?
}
let from_cpu_storage = |cpu_storage: &crate::core::CpuStorage| {
let data = S::cpu_storage_as_slice(cpu_storage)?;
Ok::<_, Error>(data[self.layout().start_offset()])
};
match &*self.storage() {
Storage::Cpu(cpu_storage) => from_cpu_storage(cpu_storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
/// An alias for `to_scalar`.
pub fn to_vec0<S: crate::core::WithDType>(&self) -> Result<S> {
self.to_scalar::<S>()
}
/// Repeat this tensor along the specified dimensions.
pub fn repeat<S: Into<Shape>>(&self, shape: S) -> Result<Tensor> {
// Similar to PyTorch, we extend the number of dimensions of self if needed.
let repeats = shape.into();
let repeats = repeats.dims();
let mut inp = if self.rank() < repeats.len() {
let shape = [vec![1; repeats.len() - self.rank()], self.dims().to_vec()].concat();
self.reshape(shape)?
} else {
self.clone()
};
for (idx, &repeat) in repeats.iter().enumerate() {
if repeat > 1 {
inp = Tensor::cat(&vec![&inp; repeat], idx)?
}
}
Ok(inp)
}
/// Creates grids of coordinates specified by the 1D inputs.
///
/// # Arguments
///
/// * `args` - A slice of 1D tensors.
/// * `xy_indexing` - Whether to use xy indexing or ij indexing. If xy is selected, the
/// first dimension corresponds to the cardinality of the second input and the second
/// dimension corresponds to the cardinality of the first input. If ij is selected, the
/// dimensions are in the same order as the cardinality of the inputs.
///
/// # Examples
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device, Shape};
/// let x = Tensor::new(&[1f32, 2., 3.], &Device::Cpu)?;
/// let y = Tensor::new(&[4f32, 5., 6.], &Device::Cpu)?;
///
/// let grids_xy = Tensor::meshgrid(&[&x, &y], true)?;
///
/// assert_eq!(grids_xy.len(), 2);
/// assert_eq!(grids_xy[0].dims(), &[3, 3]);
///
/// assert_eq!(grids_xy[0].to_vec2::<f32>()?, &[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]);
/// assert_eq!(grids_xy[1].to_vec2::<f32>()?, &[[4., 4., 4.], [5., 5., 5.], [6., 6., 6.]]);
///
/// let grids_ij = Tensor::meshgrid(&[&x, &y], false)?;
///
/// assert_eq!(grids_ij[0].to_vec2::<f32>()?, &[[1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]);
/// assert_eq!(grids_ij[1].to_vec2::<f32>()?, &[[4., 5., 6.], [4., 5., 6.], [4., 5., 6.]]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
///
/// # Errors
///
/// * Will return `Err` if `args` contains less than 2 tensors.
///
pub fn meshgrid<A: AsRef<Tensor>>(args: &[A], xy_indexing: bool) -> Result<Vec<Self>> {
if args.len() <= 1 {
Err(Error::OpRequiresAtLeastTwoTensors { op: "meshgrid" }.bt())?
}
let args: Vec<_> = if xy_indexing {
args.iter().rev().collect()
} else {
args.iter().collect()
};
let mut shape = Vec::with_capacity(args.len());
for arg in args.iter() {
shape.push(arg.as_ref().dims1()?)
}
let mut grids = Vec::with_capacity(args.len());
for idx in 0..args.len() {
let mut ones = vec![1usize; args.len()];
ones[idx] = shape[idx];
let arg = args[idx].as_ref().reshape(ones)?;
let mut repeats = shape.clone();
repeats[idx] = 1;
let repeated_tensor = arg.repeat(repeats)?;
grids.push(repeated_tensor);
}
if xy_indexing {
grids.reverse();
}
Ok(grids)
}
/// This operation multiplies the input tensor by `mul` then adds `add` and return the result.
/// The input values `mul` and `add` are casted to the appropriate type so some rounding might
/// be performed.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?;
/// let a = a.affine(4., -2.)?;
/// assert_eq!(a.to_vec2::<f32>()?, &[[-2.0, 2.0], [6.0, 10.0]]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn affine(&self, mul: f64, add: f64) -> Result<Self> {
if self.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().affine(self.layout(), mul, add)?;
let op = BackpropOp::new1(self, |arg| Op::Affine { arg, mul, add });
Ok(from_storage(storage, self.shape(), op, false))
}
/// Applies the Exponential Linear Unit (ELU) function on each element of the input tensor.
pub fn elu(&self, alpha: f64) -> Result<Self> {
if self.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().elu(self.layout(), alpha)?;
let op = BackpropOp::new1(self, |t| Op::Elu(t, alpha));
Ok(from_storage(storage, self.shape(), op, false))
}
/// Raise the tensor to some float exponent `e`.
pub fn powf(&self, e: f64) -> Result<Self> {
if self.elem_count() == 0 {
return Ok(self.clone());
}
let storage = self.storage().powf(self.layout(), e)?;
let op = BackpropOp::new1(self, |t| Op::Powf(t, e));
Ok(from_storage(storage, self.shape(), op, false))
}
pub(crate) fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
if dim >= self.dims().len() {
Err(Error::DimOutOfRange {
shape: self.shape().clone(),
dim: dim as i32,
op,
}
.bt())?
} else {
Ok(())
}
}
/// Split a tensor into the specified number of chunks, this may return less chunks than
/// specified.
pub fn chunk<D: Dim>(&self, chunks: usize, dim: D) -> Result<Vec<Self>> {
let dim = dim.to_index(self.shape(), "chunk")?;
let size = self.dim(dim)?;
if size < chunks {
(0..size).map(|i| self.narrow(dim, i, 1)).collect()
} else {
let chunk_size = size / chunks;
let cnt_additional = size % chunks;
let mut tensors = vec![];
let mut sum_chunk_size = 0;
for i in 0..chunks {
let chunk_size = if i < cnt_additional {
chunk_size + 1
} else {
chunk_size
};
let tensor = self.narrow(dim, sum_chunk_size, chunk_size)?;
tensors.push(tensor);
sum_chunk_size += chunk_size
}
Ok(tensors)
}
}
/// Returns a new tensor that is a narrowed version of the input, the dimension `dim`
/// ranges from `start` to `start + len`.
/// ```
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::new(&[
/// [0f32, 1., 2.],
/// [3. , 4., 5.],
/// [6. , 7., 8.]
/// ], &Device::Cpu)?;
///
/// let b = a.narrow(0, 1, 2)?;
/// assert_eq!(b.shape().dims(), &[2, 3]);
/// assert_eq!(b.to_vec2::<f32>()?, &[
/// [3., 4., 5.],
/// [6., 7., 8.]
/// ]);
///
/// let c = a.narrow(1, 1, 1)?;
/// assert_eq!(c.shape().dims(), &[3, 1]);
/// assert_eq!(c.to_vec2::<f32>()?, &[
/// [1.],
/// [4.],
/// [7.]
/// ]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn narrow<D: Dim>(&self, dim: D, start: usize, len: usize) -> Result<Self> {
let dims = self.dims();
let dim = dim.to_index(self.shape(), "narrow")?;
let err = |msg| {
Err::<(), _>(
Error::NarrowInvalidArgs {
shape: self.shape().clone(),
dim,
start,
len,
msg,
}
.bt(),
)
};
if start > dims[dim] {
err("start > dim_len")?
}
if start.saturating_add(len) > dims[dim] {
err("start + len > dim_len")?
}
if start == 0 && dims[dim] == len {
Ok(self.clone())
} else {
let op = BackpropOp::new1(self, |t| Op::Narrow(t, dim, start, len));
let layout = self.layout().narrow(dim, start, len)?;
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout,
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
}
fn squeeze_dims(self, dims: &[usize]) -> Result<Self> {
match dims {
[] => Ok(self),
[i] => self.squeeze(*i),
dims => {
let dims = self
.dims()
.iter()
.enumerate()
.filter_map(|(dim_idx, &v)| {
if dims.contains(&dim_idx) {
None
} else {
Some(v)
}
})
.collect::<Vec<_>>();
self.reshape(dims)
}
}
}
fn reduce_impl<D: Dim>(&self, dim: D, keepdim: bool, op: ReduceOp) -> Result<Self> {
let dim = dim.to_index(self.shape(), op.name())?;
let storage = self.storage().reduce_op(op, self.layout(), &[dim])?;
let mut dims = self.dims().to_vec();
dims[dim] = 1;
let op = match op {
ReduceOp::Sum | ReduceOp::Min | ReduceOp::Max => {
BackpropOp::new1(self, |arg| Op::Reduce(arg, op, dims.to_vec()))
}
ReduceOp::ArgMin | ReduceOp::ArgMax => BackpropOp::none(),
};
let res = from_storage(storage, dims, op, false);
if keepdim {
Ok(res)
} else {
res.squeeze_dims(&[dim])
}
}
fn sum_impl<D: Dims>(&self, sum_dims: D, keepdim: bool) -> Result<Self> {
let sum_dims = sum_dims.to_indexes(self.shape(), "sum")?;
let storage = self
.storage()
.reduce_op(ReduceOp::Sum, self.layout(), &sum_dims)?;
let mut dims = self.dims().to_vec();
for &sum_dim in sum_dims.iter() {
dims[sum_dim] = 1
}
let op = BackpropOp::new1(self, |a| Op::Reduce(a, ReduceOp::Sum, dims.to_vec()));
let sum = from_storage(storage, dims, op, false);
if keepdim {
Ok(sum)
} else {
sum.squeeze_dims(&sum_dims)
}
}
/// Roll the tensor input along the given dimension.
/// Elements that are shifted beyond the last position are re-introduced at the first position.
///
/// ```rust
/// # use diffusion_rs_common::core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.roll(1, 0)?;
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[4., 5.], [0., 1.], [2., 3.]]);
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.roll(-1, 0)?;
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[2., 3.], [4., 5.], [0., 1.]]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn roll<D>(&self, shift: i32, dim: D) -> Result<Self>
where
D: Dim + Clone,
{
let dim = dim.to_index(self.shape(), "roll")?;
let dim_size = self.dim(dim)?;
let shift = shift.rem_euclid(dim_size as i32) as usize;
if shift == 0 {
Ok(self.clone())
} else {
let a = self.narrow(dim, 0, dim_size - shift)?;
let b = self.narrow(dim, dim_size - shift, shift)?;
Tensor::cat(&[&b, &a], dim)
}
}
/// Returns the sum of all elements in the input tensor. The sum is performed over all the
/// input dimensions.
///
/// The resulting tensor has a shape that is similar to the shape of the input tensor, except
/// that the number of elements for each dimension index in `sum_dims` is 1.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?;
/// let s = a.sum_keepdim(0)?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[2., 4.]]);
/// let s = a.sum_keepdim(1)?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[1.], [5.]]);
/// let s = a.sum_keepdim((0, 1))?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[6.]]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn sum_keepdim<D: Dims>(&self, sum_dims: D) -> Result<Self> {
self.sum_impl(sum_dims, true)
}
/// Returns the sum of all elements in the input tensor. The sum is performed over all the
/// input dimensions and compared to `sum_keepdim` these dimensions are squeezed rather than
/// kept.
pub fn sum<D: Dims>(&self, sum_dims: D) -> Result<Self> {
self.sum_impl(sum_dims, false)
}
/// Returns the mean of all elements in the input tensor. The mean is performed over all the
/// input dimensions.
///
/// The resulting tensor has a shape that is similar to the shape of the input tensor, except
/// that the number of elements for each dimension index in `mean_dims` is 1.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?;
/// let s = a.mean_keepdim(0)?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[1., 2.]]);
/// let s = a.mean_keepdim(1)?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[0.5], [2.5]]);
/// let s = a.mean_keepdim((0, 1))?;
/// assert_eq!(s.to_vec2::<f32>()?, &[[1.5]]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn mean_keepdim<D: Dims>(&self, mean_dims: D) -> Result<Self> {
let mean_dims = mean_dims.to_indexes(self.shape(), "mean-keepdim")?;
let reduced_dim: usize = mean_dims.iter().map(|i| self.dims()[*i]).product();
let scale = 1f64 / (reduced_dim as f64);
self.sum_impl(mean_dims, true)? * scale
}
/// Returns the mean of all elements in the input tensor. The mean is performed over all the
/// input dimensions and compared to `mean_keepdim` these dimensions are squeezed rather than
/// kept.
pub fn mean<D: Dims>(&self, mean_dims: D) -> Result<Self> {
let mean_dims = mean_dims.to_indexes(self.shape(), "mean")?;
let reduced_dim: usize = mean_dims.iter().map(|i| self.dims()[*i]).product();
let scale = 1f64 / (reduced_dim as f64);
self.sum_impl(mean_dims, false)? * scale
}
/// Returns the unbiased variance over the selected dimension.
pub fn var_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "var")?;
let mean = self.mean_keepdim(dim)?;
let squares = self.broadcast_sub(&mean)?.sqr()?;
squares.sum_impl(dim, true)? / (self.dim(dim)? - 1) as f64
}
/// Returns the unbiased variance over the selected dimension.
pub fn var<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "var")?;
self.var_keepdim(dim)?.squeeze(dim)
}
/// Gathers the maximum value across the selected dimension. The resulting shape has the same
/// number of dimensions as the original tensor and the select dimension has a single element.
pub fn max_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, true, ReduceOp::Max)
}
/// Similar to `max_keepdim` but the target dimension is squeezed.
pub fn max<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, false, ReduceOp::Max)
}
/// Gathers the minimum value across the selected dimension. The resulting shape has the same
/// number of dimensions as the original tensor and the select dimension has a single element.
pub fn min_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, true, ReduceOp::Min)
}
/// Similar to `min_keepdim` but the target dimension is squeezed.
pub fn min<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, false, ReduceOp::Min)
}
pub fn argmax_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, true, ReduceOp::ArgMax)
}
/// Similar to `argmax_keepdim` but the target dimension is squeezed.
pub fn argmax<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, false, ReduceOp::ArgMax)
}
pub fn argmin_keepdim<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, true, ReduceOp::ArgMin)
}
/// Similar to `argmin_keepdim` but the target dimension is squeezed.
pub fn argmin<D: Dim>(&self, dim: D) -> Result<Self> {
self.reduce_impl(dim, false, ReduceOp::ArgMin)
}
/// Element-wise comparison between two tensors, e.g. equality, greater than, ... The actual
/// comparison operation is specified by the `op` argument.
///
/// The returned tensor has the same shape as the original tensors and uses `u8` elements.
pub fn cmp<T: TensorOrScalar>(&self, rhs: T, op: CmpOp) -> Result<Self> {
let rhs = match rhs.to_tensor_scalar()? {
crate::core::scalar::TensorScalar::Tensor(rhs) => rhs,
crate::core::scalar::TensorScalar::Scalar(rhs) => rhs
.to_dtype(self.dtype())?
.to_device(self.device())?
.broadcast_as(self.shape())?,
};
let shape = self.same_shape_binary_op(&rhs, "cmp")?;
let storage = self
.storage()
.cmp(op, &rhs.storage(), self.layout(), rhs.layout())?;
let op = BackpropOp::new1(self, |a| Op::Cmp(a, op));
Ok(from_storage(storage, shape.dims(), op, false))
}
/// Element-wise equality.
pub fn eq<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Eq)
}
/// Element-wise non-equality.
pub fn ne<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Ne)
}
/// Element-wise comparison with lower-than, the returned tensor uses value 1 where `self <
/// rhs` and 0 otherwise.
pub fn lt<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Lt)
}
/// Element-wise comparison with greater-than, the returned tensor uses value 1 where `self >
/// rhs` and 0 otherwise.
pub fn gt<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Gt)
}
/// Element-wise comparison with greater-equal, the returned tensor uses value 1 where `self >=
/// rhs` and 0 otherwise.
pub fn ge<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Ge)
}
/// Element-wise comparison with lower-equal, the returned tensor uses value 1 where `self <=
/// rhs` and 0 otherwise.
pub fn le<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> {
self.cmp(rhs, CmpOp::Le)
}
/// Clamp the tensor values to be between `min` and `max`.
pub fn clamp<T1: TensorOrScalar, T2: TensorOrScalar>(&self, min: T1, max: T2) -> Result<Self> {
self.maximum(min)?.minimum(max)
}
/// Interpolate the input tensor to the `target_size` size, taking the value of the nearest element.
///
/// The input tensor should have three dimensions, `(batch, channels, l)`, the returned
/// tensor also has three dimensions, `(batch, channels, target_size)`.
pub fn interpolate1d(&self, target_size: usize) -> Result<Self> {
let (n, c, _l) = self.dims3()?;
let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest1D { arg, target_size });
let storage = self
.storage()
.upsample_nearest1d(self.layout(), target_size)?;
Ok(from_storage(storage, (n, c, target_size), op, false))
}
/// Alias for `interpolate1d`.
pub fn upsample_nearest1d(&self, target_size: usize) -> Result<Self> {
self.interpolate1d(target_size)
}
/// Interpolate the input tensor to the `(target_h, target_w)` size, taking the value of the
/// nearest element.
///
/// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned
/// tensor also has four dimensions, `(batch, channels, target_h, target_w)`.
pub fn interpolate2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
let (n, c, _h, _w) = self.dims4()?;
let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest2D {
arg,
target_h,
target_w,
});
let storage = self
.storage()
.upsample_nearest2d(self.layout(), target_h, target_w)?;
Ok(from_storage(storage, (n, c, target_h, target_w), op, false))
}
/// Alias for `interpolate2d`.
pub fn upsample_nearest2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
self.interpolate2d(target_h, target_w)
}
/// 2D average pooling over an input tensor with multiple channels.
///
/// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned
/// tensor also has four dimensions, `(batch, channels, h', w')`. The pooling is performed on
/// the two last dimensions using a kernel of size `sz`. The returned element is the average
/// value over the kernel window.
pub fn avg_pool2d<T: crate::core::ToUsize2>(&self, sz: T) -> Result<Self> {
let sz = sz.to_usize2();
self.avg_pool2d_with_stride(sz, sz)
}
/// Same as `avg_pool2d` but with a `stride` that can be set to a value different from the
/// kernel size.
pub fn avg_pool2d_with_stride<T: crate::core::ToUsize2>(
&self,
kernel_size: T,
stride: T,
) -> Result<Self> {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
if h < kernel_size.0 || w < kernel_size.1 {
bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}")
}
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
let op = BackpropOp::new1(self, |arg| Op::AvgPool2D {
arg,
kernel_size,
stride,
});
let storage = self
.storage()
.avg_pool2d(self.layout(), kernel_size, stride)?;
Ok(from_storage(storage, (n, c, h_out, w_out), op, false))
}
/// 2D max pooling over an input tensor with multiple channels.
///
/// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned
/// tensor also has four dimensions, `(batch, channels, h', w')`. The pooling is performed on
/// the two last dimensions using a kernel of size `sz`, the returned element is the maximum
/// value over the kernel window.
pub fn max_pool2d<T: crate::core::ToUsize2>(&self, sz: T) -> Result<Self> {
let sz = sz.to_usize2();
self.max_pool2d_with_stride(sz, sz)
}
/// Same as `max_pool2d` but with a `stride` that can be set to a value different from the
/// kernel size.
pub fn max_pool2d_with_stride<T: crate::core::ToUsize2>(
&self,
kernel_size: T,
stride: T,
) -> Result<Self> {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
if h < kernel_size.0 || w < kernel_size.1 {
bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}")
}
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
let op = BackpropOp::new1(self, |arg| Op::MaxPool2D {
arg,
kernel_size,
stride,
});
let storage = self
.storage()
.max_pool2d(self.layout(), kernel_size, stride)?;
Ok(from_storage(storage, (n, c, h_out, w_out), op, false))
}
/// Returns the matrix-multiplication of the input tensor with the other provided tensor.
///
/// # Arguments
///
/// * `self` - A tensor with dimensions `b1, b2, ..., bi, m, k`.
/// * `rhs` - A tensor with dimensions `b1, b2, ..., bi, k, n`.
///
/// The resulting tensor has dimensions `b1, b2, ..., bi, m, n`.
pub fn matmul(&self, rhs: &Self) -> Result<Self> {
let a_dims = self.shape().dims();
let b_dims = rhs.shape().dims();
let dim = a_dims.len();
if dim < 2 || b_dims.len() != dim {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
}
.bt())?
}
let m = a_dims[dim - 2];
let k = a_dims[dim - 1];
let k2 = b_dims[dim - 2];
let n = b_dims[dim - 1];
let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
if c_shape.elem_count() == 0 || k == 0 {
return Tensor::zeros(c_shape, self.dtype(), self.device());
}
let batching: usize = a_dims[..dim - 2].iter().product();
let batching_b: usize = b_dims[..dim - 2].iter().product();
if k != k2 || batching != batching_b {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
}
.bt())?
}
let storage = self.storage().matmul_with_alpha(
&rhs.storage(),
None,
(batching, m, n, k),
self.layout(),
rhs.layout(),
)?;
let op = BackpropOp::new2(self, rhs, Op::Matmul);
Ok(from_storage(storage, c_shape, op, false))
}
/// Matrix-multiplication with broadcasting support.
///
/// Compared to `matmul` the two matrixes are allowed to have different dimensions as long as
/// they are compatible for broadcast. E.g. if `self` has shape `(j, 1, n, k)` and `rhs` has
/// shape `(l, k, m)`, the output will have shape `(j, l, n, m)`.
pub fn broadcast_matmul(&self, rhs: &Self) -> Result<Self> {
let lhs = self;
let (l_shape, r_shape) = lhs.shape().broadcast_shape_matmul(rhs.shape())?;
let l_broadcast = l_shape != *lhs.shape();
let r_broadcast = r_shape != *rhs.shape();
// TODO: Avoid concretising the broadcasted matrixes via contiguous.
match (l_broadcast, r_broadcast) {
(true, true) => lhs
.broadcast_as(&l_shape)?
.contiguous()?
.matmul(&rhs.broadcast_as(&r_shape)?.contiguous()?),
(false, true) => lhs.matmul(&rhs.broadcast_as(&r_shape)?.contiguous()?),
(true, false) => lhs.broadcast_as(&l_shape)?.contiguous()?.matmul(rhs),
(false, false) => lhs.matmul(rhs),
}
}
/// Returns the matrix-multiplication of the input tensor with the other provided tensor. The result is scaled
/// and then added to the output tensor, the bias tensor `c`.
///
/// If `scale` is None, then the output is as follows:
/// `c := c + axb`
///
/// Else:
/// `c := c + scale * (axb)`
///
/// This function is faster than a matmul followed by some scaling multiply because the scaling is fused in the GEMM kernel.
/// This is incompatible with gradient tracking. No gradients will be tracked on this operation. However, this also means
/// there is an allocation saved as the output is in `c`.
///
/// # Arguments
///
/// * `self` - A tensor with dimensions `b1, b2, ..., bi, m, k`.
/// * `rhs` - A tensor with dimensions `b1, b2, ..., bi, k, n`.
/// * `c` - A tensor with dimensions `b1, b2, ..., bi, m, n`, into which the result is accumulated and added to.
/// * `scale` - Factor to multiply `self` x `rhs` by
pub fn matmul_with_alpha_beta(
&self,
rhs: &Self,
c: &mut Self,
scale: Option<f64>,
) -> Result<()> {
let a_dims = self.shape().dims();
let b_dims = rhs.shape().dims();
let dim = a_dims.len();
if dim < 2 || b_dims.len() != dim {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
}
.bt())?
}
let m = a_dims[dim - 2];
let k = a_dims[dim - 1];
let k2 = b_dims[dim - 2];
let n = b_dims[dim - 1];
let exp_c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
if exp_c_shape.elem_count() == 0 || k == 0 {
bail!("Expected `c` to have more than one element, got 0.");
}
if exp_c_shape != c.shape().clone() {
Err(Error::UnexpectedShape {
msg: "`c` has an unexpected shape.".to_string(),
expected: exp_c_shape,
got: c.shape().clone(),
})?
}
let batching: usize = a_dims[..dim - 2].iter().product();
let batching_b: usize = b_dims[..dim - 2].iter().product();
if k != k2 || batching != batching_b {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul_with_alpha_beta",
}
.bt())?
}
self.storage().matmul_with_alpha_beta(
&rhs.storage(),
&mut c.storage_mut(),
scale,
(batching, m, n, k),
self.layout(),
rhs.layout(),
c.layout(),
)
}
/// Returns the matrix-multiplication of the input tensor with the other provided tensor. The result is scaled.
///
/// This function is faster than a matmul followed by some scaling multiply because the scaling is fused in the GEMM kernel.
///
/// The output is as follows:
/// `scale * (axb)`
///
///
/// This is incompatible with gradient tracking. No gradients will be tracked on this operation.
///
/// # Arguments
///
/// * `self` - A tensor with dimensions `b1, b2, ..., bi, m, k`.
/// * `rhs` - A tensor with dimensions `b1, b2, ..., bi, k, n`.
/// * `scale` - Factor to multiply `self` x `rhs` by.
pub fn matmul_with_alpha(&self, rhs: &Self, scale: Option<f64>) -> Result<Self> {
let a_dims = self.shape().dims();
let b_dims = rhs.shape().dims();
let dim = a_dims.len();
if dim < 2 || b_dims.len() != dim {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
}
.bt())?
}
let m = a_dims[dim - 2];
let k = a_dims[dim - 1];
let k2 = b_dims[dim - 2];
let n = b_dims[dim - 1];
let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
if c_shape.elem_count() == 0 || k == 0 {
return Tensor::zeros(c_shape, self.dtype(), self.device());
}
let batching: usize = a_dims[..dim - 2].iter().product();
let batching_b: usize = b_dims[..dim - 2].iter().product();
if k != k2 || batching != batching_b {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul_with_alpha",
}
.bt())?
}
let storage = self.storage().matmul_with_alpha(
&rhs.storage(),
scale,
(batching, m, n, k),
self.layout(),
rhs.layout(),
)?;
let op = BackpropOp::new2(self, rhs, Op::Matmul);
Ok(from_storage(storage, c_shape, op, false))
}
/// Matrix-multiplication with broadcasting support and fused scaling.
///
/// Compared to `matmul` the two matrixes are allowed to have different dimensions as long as
/// they are compatible for broadcast. E.g. if `self` has shape `(j, 1, n, k)` and `rhs` has
/// shape `(l, k, m)`, the output will have shape `(j, l, n, m)`.
pub fn broadcast_matmul_with_alpha(&self, rhs: &Self, scale: Option<f64>) -> Result<Self> {
let lhs = self;
let (l_shape, r_shape) = lhs.shape().broadcast_shape_matmul(rhs.shape())?;
let l_broadcast = l_shape != *lhs.shape();
let r_broadcast = r_shape != *rhs.shape();
// TODO: Avoid concretising the broadcasted matrixes via contiguous.
match (l_broadcast, r_broadcast) {
(true, true) => lhs
.broadcast_as(&l_shape)?
.contiguous()?
.matmul_with_alpha(&rhs.broadcast_as(&r_shape)?.contiguous()?, scale),
(false, true) => {
lhs.matmul_with_alpha(&rhs.broadcast_as(&r_shape)?.contiguous()?, scale)
}
(true, false) => lhs
.broadcast_as(&l_shape)?
.contiguous()?
.matmul_with_alpha(rhs, scale),
(false, false) => lhs.matmul_with_alpha(rhs, scale),
}
}
/// Returns a tensor with the same shape as the input tensor, the values are taken from
/// `on_true` if the input tensor value is not zero, and `on_false` at the positions where the
/// input tensor is equal to zero.
pub fn where_cond(&self, on_true: &Self, on_false: &Self) -> Result<Self> {
let _shap = self.same_shape_binary_op(on_true, "where_cond")?;
let shape = self.same_shape_binary_op(on_false, "where_cond")?;
let storage = self.storage().where_cond(
self.layout(),
&on_true.storage(),
on_true.layout(),
&on_false.storage(),
on_false.layout(),
)?;
let op = BackpropOp::new3(self, on_true, on_false, Op::WhereCond);
Ok(from_storage(storage, shape, op, false))
}
/// Returns a tensor with the values from the `self` tensor at the index corresponding to the
/// values hold in the `ids` tensor.
///
/// # Arguments
///
/// * `self` - A tensor with dimensions `v, h`.
/// * `ids` - A tensor with dimensions `s` and with integer values between 0 and v (exclusive).
///
/// The resulting tensor has dimensions `s, h`. `s` is called the sequence length, `v` the
/// vocabulary size, and `h` the hidden size.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let values = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let ids = Tensor::new(&[2u32, 1u32, 2u32], &Device::Cpu)?;
/// let emb = values.embedding(&ids)?;
/// assert_eq!(emb.to_vec2::<f32>()?, &[[4., 5.], [2., 3.], [4., 5.]]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn embedding(&self, ids: &Self) -> Result<Self> {
if self.rank() != 2 || ids.rank() != 1 {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: ids.shape().clone(),
op: "embedding",
}
.bt())?
}
self.index_select(ids, 0)
}
/// Returns an iterator over position of the elements in the storage when ranging over the
/// index tuples in lexicographic order.
pub fn strided_index(&self) -> crate::core::StridedIndex {
self.layout.strided_index()
}
/// Similar to `strided_index` but returns the position of the start of each contiguous block
/// as well as the length of the contiguous blocks. For a contiguous tensor, the index iterator
/// will only return the start offset and the size would be the number of elements in the
/// tensor.
pub fn strided_blocks(&self) -> crate::core::StridedBlocks {
self.layout.strided_blocks()
}
/// Returns the data contained in a 1D tensor as a vector of scalar values.
pub fn to_vec1<S: crate::core::WithDType>(&self) -> Result<Vec<S>> {
if self.rank() != 1 {
Err(Error::UnexpectedNumberOfDims {
expected: 1,
got: self.rank(),
shape: self.shape().clone(),
}
.bt())?
}
let from_cpu_storage = |cpu_storage: &crate::core::CpuStorage| {
let data = S::cpu_storage_as_slice(cpu_storage)?;
let data = match self.layout.contiguous_offsets() {
Some((o1, o2)) => data[o1..o2].to_vec(),
None => self.strided_index().map(|i| data[i]).collect(),
};
Ok::<Vec<_>, Error>(data)
};
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
/// Returns the data contained in a 2D tensor as a vector of vector of scalar values.
pub fn to_vec2<S: crate::core::WithDType>(&self) -> Result<Vec<Vec<S>>> {
let (dim1, dim2) = self.dims2()?;
let from_cpu_storage = |cpu_storage: &crate::core::CpuStorage| {
let data = S::cpu_storage_as_slice(cpu_storage)?;
let mut rows = vec![];
match self.layout.contiguous_offsets() {
Some((o1, o2)) => {
let data = &data[o1..o2];
for idx_row in 0..dim1 {
rows.push(data[idx_row * dim2..(idx_row + 1) * dim2].to_vec())
}
}
None => {
let mut src_index = self.strided_index();
for _idx_row in 0..dim1 {
let row = (0..dim2).map(|_| data[src_index.next().unwrap()]).collect();
rows.push(row)
}
assert!(src_index.next().is_none());
}
}
Ok(rows)
};
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
/// Returns the data contained in a 3D tensor.
pub fn to_vec3<S: crate::core::WithDType>(&self) -> Result<Vec<Vec<Vec<S>>>> {
let (dim1, dim2, dim3) = self.dims3()?;
let from_cpu_storage = |cpu_storage: &crate::core::CpuStorage| {
let data = S::cpu_storage_as_slice(cpu_storage)?;
let mut top_rows = vec![];
match self.layout.contiguous_offsets() {
Some((o1, o2)) => {
let data = &data[o1..o2];
let dim23 = dim2 * dim3;
for idx1 in 0..dim1 {
let data = &data[idx1 * dim23..(idx1 + 1) * dim23];
let mut rows = vec![];
for idx2 in 0..dim2 {
rows.push(data[idx2 * dim3..(idx2 + 1) * dim3].to_vec())
}
top_rows.push(rows);
}
}
None => {
let mut src_index = self.strided_index();
for _idx in 0..dim1 {
let mut rows = vec![];
for _jdx in 0..dim2 {
let row = (0..dim3).map(|_| data[src_index.next().unwrap()]).collect();
rows.push(row)
}
top_rows.push(rows);
}
assert!(src_index.next().is_none());
}
}
Ok(top_rows)
};
match &*self.storage() {
Storage::Cpu(storage) => from_cpu_storage(storage),
Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?),
}
}
/// The dtype for the elements stored in the input tensor.
pub fn dtype(&self) -> DType {
self.dtype
}
/// The device on which the input tensor is located.
pub fn device(&self) -> &Device {
&self.device
}
/// The tensor shape, i.e. dimension sizes on each axis.
pub fn shape(&self) -> &Shape {
self.layout().shape()
}
/// The dimension size for this tensor on each axis.
pub fn dims(&self) -> &[usize] {
self.shape().dims()
}
/// The dimension size for a specified dimension index.
pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> {
let dim = dim.to_index(self.shape(), "dim")?;
Ok(self.dims()[dim])
}
/// The layout of the input tensor, this stores both the shape of the tensor as well as the
/// strides and the start offset to apply to the underlying storage.
pub fn layout(&self) -> &Layout {
&self.layout
}
pub fn stride(&self) -> &[usize] {
self.layout.stride()
}
/// The number of dimensions for this tensor, 0 for a scalar tensor, 1 for a 1D tensor, etc.
pub fn rank(&self) -> usize {
self.shape().rank()
}
/// The number of elements stored in this tensor.
pub fn elem_count(&self) -> usize {
self.shape().elem_count()
}
/// The unique identifier for this tensor.
pub fn id(&self) -> TensorId {
self.id
}
/// Whether this tensor is a variable or not. A variable is a tensor for which gradient is
/// tracked and on which backpropagation can be performed.
pub fn is_variable(&self) -> bool {
self.is_variable
}
pub(crate) fn op(&self) -> &Option<Op> {
&self.op
}
/// Computes the sum of all the elements in this tensor and returns a tensor holding this
/// scalar with zero dimensions.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.sum_all()?;
/// assert_eq!(tensor.to_scalar::<f32>()?, 15.);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn sum_all(&self) -> Result<Tensor> {
let dims: Vec<_> = (0..self.rank()).collect();
self.sum(dims)
}
pub fn mean_all(&self) -> Result<Tensor> {
self.sum_all()? / self.elem_count() as f64
}
fn flatten_<D1: Dim, D2: Dim>(
&self,
start_dim: Option<D1>,
end_dim: Option<D2>,
) -> Result<Tensor> {
if self.rank() == 0 {
self.reshape(1)
} else {
let start_dim = match start_dim {
None => 0,
Some(dim) => dim.to_index(self.shape(), "flatten")?,
};
let end_dim = match end_dim {
None => self.rank() - 1,
Some(dim) => dim.to_index(self.shape(), "flatten")?,
};
if start_dim < end_dim {
let dims = self.dims();
let mut dst_dims = dims[..start_dim].to_vec();
dst_dims.push(dims[start_dim..end_dim + 1].iter().product::<usize>());
if end_dim + 1 < dims.len() {
dst_dims.extend(&dims[end_dim + 1..]);
}
self.reshape(dst_dims)
} else {
Ok(self.clone())
}
}
}
/// Flattens the input tensor on the dimension indexes from `start_dim` to `end_dim` (both
/// inclusive).
pub fn flatten<D1: Dim, D2: Dim>(&self, start_dim: D1, end_dim: D2) -> Result<Tensor> {
self.flatten_(Some(start_dim), Some(end_dim))
}
/// Flattens the input tensor on the dimension indexes from `0` to `end_dim` (inclusive).
pub fn flatten_to<D: Dim>(&self, end_dim: D) -> Result<Tensor> {
self.flatten_(None::<usize>, Some(end_dim))
}
/// Flattens the input tensor on the dimension indexes from `start_dim` (inclusive) to the last
/// dimension.
pub fn flatten_from<D: Dim>(&self, start_dim: D) -> Result<Tensor> {
self.flatten_(Some(start_dim), None::<usize>)
}
/// Flattens the input tensor by reshaping it into a one dimension tensor.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.flatten_all()?;
/// assert_eq!(tensor.to_vec1::<f32>()?, &[0., 1., 2., 3., 4., 5.]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn flatten_all(&self) -> Result<Tensor> {
self.flatten_(None::<usize>, None::<usize>)
}
/// Returns the sub-tensor fixing the index at `i` on the first dimension.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let t = tensor.get(0)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[0., 1.]);
/// let t = tensor.get(1)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[2., 3.]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn get(&self, i: usize) -> Result<Tensor> {
let dims = self.dims();
if dims.is_empty() {
Ok(self.clone())
} else {
self.narrow(0, i, 1)?.reshape(&dims[1..])
}
}
/// Returns the sub-tensor fixing the index at `index` on the dimension `dim`.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let t = tensor.get_on_dim(1, 0)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[0., 2., 4.]);
/// let t = tensor.get_on_dim(1, 1)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[1., 3., 5.]);
/// let t = tensor.get_on_dim(0, 1)?;
/// assert_eq!(t.to_vec1::<f32>()?, &[2., 3.]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn get_on_dim<D: Dim>(&self, dim: D, index: usize) -> Result<Tensor> {
let dim = dim.to_index(self.shape(), "get_on_dim")?;
self.narrow(dim, index, 1)?.squeeze(dim)
}
/// Returns a tensor that is a transposed version of the input, the two last dimensions of the
/// input are swapped.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?;
/// let tensor = tensor.t()?;
/// assert_eq!(tensor.to_vec2::<f32>()?, &[[0.0, 2.0, 4.0], [1.0, 3.0, 5.0]]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn t(&self) -> Result<Tensor> {
let rank = self.rank();
if rank < 2 {
Err(Error::UnexpectedNumberOfDims {
expected: 2,
got: rank,
shape: self.shape().clone(),
}
.bt())?
}
self.transpose(rank - 2, rank - 1)
}
/// Returns a tensor that is a transposed version of the input, the given dimensions are
/// swapped.
pub fn transpose<D1: Dim, D2: Dim>(&self, dim1: D1, dim2: D2) -> Result<Tensor> {
let dim1 = dim1.to_index(self.shape(), "transpose")?;
let dim2 = dim2.to_index(self.shape(), "transpose")?;
if dim1 == dim2 {
return Ok(self.clone());
}
let op = BackpropOp::new1(self, |t| Op::Transpose(t, dim1, dim2));
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.transpose(dim1, dim2)?,
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// Returns a tensor with the same data as the input where the dimensions have been permuted.
/// dims must be a permutation, i.e. include each dimension index exactly once.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let tensor = Tensor::arange(0u32, 120u32, &Device::Cpu)?.reshape((2, 3, 4, 5))?;
/// assert_eq!(tensor.dims(), &[2, 3, 4, 5]);
/// let tensor = tensor.permute((2, 3, 1, 0))?;
/// assert_eq!(tensor.dims(), &[4, 5, 3, 2]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn permute<D: Dims>(&self, dims: D) -> Result<Tensor> {
let dims = dims.to_indexes(self.shape(), "permute")?;
// O(n^2) permutation check but these arrays are small.
let is_permutation =
dims.len() == self.rank() && (0..dims.len()).all(|i| dims.contains(&i));
if !is_permutation {
bail!(
"dimension mismatch in permute, tensor {:?}, dims: {:?}",
self.dims(),
dims
)
}
let op = BackpropOp::new1(self, |t| Op::Permute(t, dims.clone()));
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.permute(&dims)?,
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// Returns true if the data is stored in a C contiguous (aka row major) way.
pub fn is_contiguous(&self) -> bool {
self.layout.is_contiguous()
}
/// Returns true if the data is stored in a Fortran contiguous (aka column major) way.
pub fn is_fortran_contiguous(&self) -> bool {
self.layout.is_fortran_contiguous()
}
/// Compared to clone, this copies the actual storage but may fail because of running out of
/// memory.
pub fn copy(&self) -> Result<Tensor> {
let op = BackpropOp::new1(self, Op::Copy);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: Arc::new(RwLock::new(self.storage().try_clone(self.layout())?)),
layout: self.layout.clone(),
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// Returns a new tensor detached from the current graph, gradient are not propagated through
/// this new node. The storage of this tensor is shared with the initial tensor.
///
/// If the tensor is already detached from the computation graph, the same tensor is returned.
pub fn detach(&self) -> Tensor {
if self.op.is_none() && !self.is_variable {
self.clone()
} else {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.clone(),
op: BackpropOp::none(),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Tensor(Arc::new(tensor_))
}
}
/// If the target device is the same as the tensor device, only a shallow copy is performed.
pub fn to_device(&self, device: &Device) -> Result<Tensor> {
if self.device().same_device(device) {
Ok(self.clone())
} else {
let storage = match (&*self.storage(), device) {
(Storage::Cpu(storage), Device::Cuda(cuda)) => {
Storage::Cuda(cuda.storage_from_cpu_storage(storage)?)
}
(Storage::Cpu(storage), Device::Metal(metal)) => {
Storage::Metal(metal.storage_from_cpu_storage(storage)?)
}
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Metal(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
// TODO: Avoid passing through the cpu storage here, especially if the gpu ids
// are the same.
let cpu_storage = storage.to_cpu_storage()?;
Storage::Cuda(cuda.storage_from_cpu_storage(&cpu_storage)?)
}
(Storage::Cpu(storage), Device::Cpu) => Storage::Cpu(storage.clone()),
_ => {
bail!(
"not implemented yet, self.device: {:?}, device: {:?}",
self.device(),
device
)
}
};
let op = BackpropOp::new1(self, Op::ToDevice);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: Arc::new(RwLock::new(storage)),
layout: self.layout.clone(),
op,
is_variable: false,
dtype: self.dtype,
device: device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
}
/// Returns a new tensor duplicating data from the original tensor. New dimensions are inserted
/// on the left.
pub fn broadcast_left<S: Into<Shape>>(&self, left_shape: S) -> Result<Self> {
let left_shape = left_shape.into();
let mut dims = left_shape.into_dims();
dims.extend(self.dims());
self.broadcast_as(dims)
}
/// Broadcast the input tensor to the target shape. This returns an error if the input shape is
/// not compatible with the target shape.
///
/// If the input shape is `i_1, i_2, ... i_k`, the target shape has to have `k` dimensions or
/// more and shape `j_1, ..., j_l, t_1, t_2, ..., t_k`. The dimensions `j_1` to `j_l` can have
/// any value, the dimension `t_a` must be equal to `i_a` if `i_a` is different from 1. If
/// `i_a` is equal to 1, any value can be used.
pub fn broadcast_as<S: Into<Shape>>(&self, shape: S) -> Result<Self> {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: self.layout.broadcast_as(shape)?,
op: BackpropOp::new1(self, Op::Broadcast),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// An alias for broadcast_as.
pub fn expand<S: Into<Shape>>(&self, shape: S) -> Result<Self> {
self.broadcast_as(shape)
}
/// Casts the input tensor to the target `dtype`.
///
/// ```rust
/// use diffusion_rs_common::core::{Tensor, Device};
/// let tensor = Tensor::new(3.14159265358979f64, &Device::Cpu)?;
/// assert_eq!(tensor.to_scalar::<f64>()?, 3.14159265358979);
/// let tensor = tensor.to_dtype(diffusion_rs_common::core::DType::F32)?;
/// assert_eq!(tensor.to_scalar::<f32>()?, 3.1415927);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn to_dtype(&self, dtype: DType) -> Result<Self> {
if self.dtype() == dtype {
Ok(self.clone())
} else {
let shape = self.shape();
let storage = self.storage().to_dtype(self.layout(), dtype)?;
let op = BackpropOp::new1(self, Op::ToDType);
Ok(from_storage(storage, shape.clone(), op, false))
}
}
/// Returns a tensor that is in row major order. This is the same as the original tensor if it
/// was already contiguous, otherwise a copy is triggered.
pub fn contiguous(&self) -> Result<Tensor> {
if self.is_contiguous() {
Ok(self.clone())
} else {
let shape = self.shape();
let mut storage = unsafe { self.device().alloc_uninit(shape, self.dtype())? };
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
let op = BackpropOp::new1(self, Op::Copy);
Ok(from_storage(storage, shape.clone(), op, false))
}
}
/// Returns a tensor that is in row major order. This always makes a copy.
pub fn force_contiguous(&self) -> Result<Tensor> {
let shape = self.shape();
let mut storage = unsafe { self.device().alloc_uninit(shape, self.dtype())? };
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
let op = BackpropOp::new1(self, Op::Copy);
Ok(from_storage(storage, shape.clone(), op, false))
}
/// Create a variable based on the values currently stored in a tensor. The storage is always
/// copied.
pub(crate) fn make_var(&self) -> Result<Tensor> {
let shape = self.shape().clone();
let mut storage = unsafe { self.device().alloc_uninit(&shape, self.dtype())? };
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
Ok(from_storage(storage, shape, BackpropOp::none(), true))
}
/// Reshape returns a tensor with the target shape provided that the number of elements of the
/// original tensor is the same.
/// If the input tensor is contiguous, this is a view on the original data. Otherwise this uses
/// a new storage and copies the data over, the returned tensor is always contiguous.
///
/// The shape can be specified using a tuple of `usize` and at most one `()` in which case
/// the behavior is the same as when using `-1` in PyTorch: this dimension size is adjusted so
/// as to match the number of elements in the tensor.
///
/// ```rust
/// # use diffusion_rs_common::core::{Tensor, DType, Device, D};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = a.reshape((1, 6))?;
/// assert_eq!(c.shape().dims(), &[1, 6]);
///
/// let c = a.reshape((3, 2))?;
/// assert_eq!(c.shape().dims(), &[3, 2]);
///
/// let c = a.reshape((2, (), 1))?;
/// assert_eq!(c.shape().dims(), &[2, 3, 1]);
///
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn reshape<S: crate::core::shape::ShapeWithOneHole>(&self, s: S) -> Result<Tensor> {
let shape = s.into_shape(self.elem_count())?;
if shape.elem_count() != self.elem_count() {
return Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: shape,
op: "reshape",
}
.bt());
}
let op = BackpropOp::new1(self, Op::Reshape);
if self.is_contiguous() {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: Layout::contiguous_with_offset(shape, self.layout.start_offset()),
op,
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
} else {
let mut storage = unsafe { self.device().alloc_uninit(&shape, self.dtype())? };
self.storage()
.copy_strided_src(&mut storage, 0, self.layout())?;
Ok(from_storage(storage, shape, op, false))
}
}
/// Creates a new tensor with the specified dimension removed if its size was one.
///
/// ```rust
/// # use diffusion_rs_common::core::{Tensor, DType, Device, D};
/// let a = Tensor::zeros((2, 3, 1), DType::F32, &Device::Cpu)?;
///
/// let c = a.squeeze(2)?;
/// assert_eq!(c.shape().dims(), &[2, 3]);
///
/// let c = a.squeeze(D::Minus1)?;
/// assert_eq!(c.shape().dims(), &[2, 3]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn squeeze<D: Dim>(&self, dim: D) -> Result<Self> {
// The PyTorch semantics are to return the same tensor if the target dimension
// does not have a size of 1.
let dims = self.dims();
let dim = dim.to_index(self.shape(), "squeeze")?;
if dims[dim] == 1 {
let mut dims = dims.to_vec();
let mut strides = self.stride().to_vec();
dims.remove(dim);
strides.remove(dim);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: Layout::new(dims.into(), strides, self.layout.start_offset()),
op: BackpropOp::new1(self, Op::Reshape),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
} else {
Ok(self.clone())
}
}
/// Creates a new tensor with a dimension of size one inserted at the specified position.
///
/// ```rust
/// # use diffusion_rs_common::core::{Tensor, DType, Device, D};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = a.unsqueeze(0)?;
/// assert_eq!(c.shape().dims(), &[1, 2, 3]);
///
/// let c = a.unsqueeze(D::Minus1)?;
/// assert_eq!(c.shape().dims(), &[2, 3, 1]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn unsqueeze<D: Dim>(&self, dim: D) -> Result<Self> {
let mut dims = self.dims().to_vec();
let mut strides = self.stride().to_vec();
let dim = dim.to_index_plus_one(self.shape(), "unsqueeze")?;
// Cannot panic because to_index_plus_one already checks dimensions
dims.insert(dim, 1);
// Any stride would work here, but we pick one so as to maximize the probability to remain
// C contiguous.
let stride = if dim < strides.len() { strides[dim] } else { 1 };
strides.insert(dim, stride);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: Layout::new(dims.into(), strides, self.layout.start_offset()),
op: BackpropOp::new1(self, Op::Reshape),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
/// Stacks two or more tensors along a particular dimension.
///
/// All tensors must have the same rank, and the output has one additional rank
///
/// ```rust
/// # use diffusion_rs_common::core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = Tensor::stack(&[&a, &b], 0)?;
/// assert_eq!(c.shape().dims(), &[2, 2, 3]);
///
/// let c = Tensor::stack(&[&a, &b], 2)?;
/// assert_eq!(c.shape().dims(), &[2, 3, 2]);
/// # Ok::<(), diffusion_rs_common::core::Error>(())
/// ```
pub fn stack<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "stack" }.bt())?
}
let dim = dim.to_index_plus_one(args[0].as_ref().shape(), "stack")?;
let args = args
.iter()
.map(|t| t.as_ref().unsqueeze(dim))
.collect::<Result<Vec<_>>>()?;
Self::cat(&args, dim)
}
/// Pad the input tensor using 0s along dimension `dim`. This adds `left` elements before the
/// input tensor values and `right` elements after.
pub fn pad_with_zeros<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {
if left == 0 && right == 0 {
Ok(self.clone())
} else if left == 0 {
let dim = dim.to_index(self.shape(), "pad_with_zeros")?;
let mut dims = self.dims().to_vec();
dims[dim] = right;
let right = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?;
Tensor::cat(&[self, &right], dim)
} else if right == 0 {
let dim = dim.to_index(self.shape(), "pad_with_zeros")?;
let mut dims = self.dims().to_vec();
dims[dim] = left;
let left = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?;
Tensor::cat(&[&left, self], dim)
} else {
let dim = dim.to_index(self.shape(), "pad_with_zeros")?;
let mut dims = self.dims().to_vec();
dims[dim] = left;
let left = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?;
dims[dim] = right;
let right = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?;
Tensor::cat(&[&left, self, &right], dim)
}
}
/// Pad the input tensor using same values along dimension `dim`. This adds `left` elements before the
/// input tensor values and `right` elements after.
pub fn pad_with_same<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {
if left == 0 && right == 0 {
Ok(self.clone())
} else if self.elem_count() == 0 {
bail!("cannot use pad_with_same on an empty tensor")
} else if left == 0 {
let dim = dim.to_index(self.shape(), "pad_with_same")?;
let r = self.narrow(dim, self.dim(dim)? - 1, 1)?;
let mut v = vec![self];
for _ in 0..right {
v.push(&r)
}
Tensor::cat(&v, dim)
} else if right == 0 {
let dim = dim.to_index(self.shape(), "pad_with_same")?;
let l = self.narrow(dim, 0, 1)?;
let mut v = vec![];
for _ in 0..left {
v.push(&l)
}
v.push(self);
Tensor::cat(&v, dim)
} else {
let dim = dim.to_index(self.shape(), "pad_with_same")?;
let l = self.narrow(dim, 0, 1)?;
let r = self.narrow(dim, self.dim(dim)? - 1, 1)?;
let mut v = vec![];
for _ in 0..left {
v.push(&l)
}
v.push(self);
for _ in 0..right {
v.push(&r)
}
Tensor::cat(&v, dim)
}
}
/// Run the `forward` method of `m` on `self`.
pub fn apply<M: crate::core::Module>(&self, m: &M) -> Result<Self> {
m.forward(self)
}
/// Run the `forward` method of `m` on `self`.
pub fn apply_t<M: crate::core::ModuleT>(&self, m: &M, train: bool) -> Result<Self> {
m.forward_t(self, train)
}
pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> {
self.storage.read().unwrap()
}
pub(crate) fn storage_mut(&self) -> std::sync::RwLockWriteGuard<'_, Storage> {
self.storage.write().unwrap()
}
// If we extend the visibility of this function to be usable outside of this crate, we should
// make it unsafe.
pub(crate) fn storage_mut_and_layout(
&self,
) -> (std::sync::RwLockWriteGuard<'_, Storage>, &Layout) {
let storage = self.storage.write().unwrap();
(storage, &self.layout)
}
/// The storage used by this tensor, together with the layout to use to access it safely.
pub fn storage_and_layout(&self) -> (std::sync::RwLockReadGuard<'_, Storage>, &Layout) {
let storage = self.storage.read().unwrap();
(storage, &self.layout)
}
pub(crate) fn same_storage(&self, rhs: &Self) -> bool {
let lhs: &RwLock<Storage> = self.storage.as_ref();
let rhs: &RwLock<Storage> = rhs.storage.as_ref();
std::ptr::eq(lhs, rhs)
}
/// Normalize a 'relative' axis value: positive values are kept, negative
/// values means counting the dimensions from the back.
pub fn normalize_axis(&self, axis: i64) -> Result<usize> {
let rank = self.rank() as i64;
if rank <= axis {
bail!("axis {axis} is too large, tensor rank {rank}")
} else if 0 <= axis {
Ok(axis as usize)
} else {
let naxis = rank + axis;
if naxis < 0 {
bail!("axis {axis} is too small, tensor rank {rank}")
}
Ok(naxis as usize)
}
}
/// Returns a lower triangular matrix of ones of size n by n.
pub fn tril2(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.le(&t2)?.to_dtype(dtype)
}
/// Returns an upper triangular matrix of ones of size n by n.
pub fn triu2(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.ge(&t2)?.to_dtype(dtype)
}
/// Returns a matrix with a diagonal of ones of size n by n.
pub fn eye(n: usize, dtype: DType, device: &Device) -> Result<Self> {
let t = Tensor::arange(0u32, n as u32, device)?;
let t1 = t.reshape((1, n))?.broadcast_as((n, n))?;
let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?;
t1.eq(&t2)?.to_dtype(dtype)
}
/// Returns the cumulative sum of elements of the input tensor summed over the specified
/// dimension.
///
/// This operation is most efficient when dim is the last dimension of the tensor.
pub fn cumsum<D: Dim>(&self, dim: D) -> Result<Self> {
let dim = dim.to_index(self.shape(), "cumsum")?;
let rank = self.rank();
if rank == 0 {
return Ok(self.clone());
}
let n_axis = self.dim(dim)?;
let triu = Tensor::triu2(n_axis, self.dtype(), self.device())?;
if rank == 1 {
self.unsqueeze(0)?.matmul(&triu)?.squeeze(0)
} else {
let last = rank - 1;
let t = self.transpose(dim, last)?;
let t = t.broadcast_matmul(&triu)?;
t.transpose(dim, last)
}
}
/// Returns log(sum(exp(tensor), dim)).
pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
let sum_dims = sum_dims.to_indexes(self.shape(), "log-sum-exp")?;
if sum_dims.is_empty() {
return Ok(self.clone());
}
let max = sum_dims[1..]
.iter()
.try_fold(self.max_keepdim(sum_dims[0])?, |max, &dim| {
max.max_keepdim(dim)
})?;
let exp = self.broadcast_sub(&max)?.exp()?;
let sum = exp.sum(sum_dims.clone())?;
sum.log()? + max.squeeze_dims(&sum_dims)
}
/// Pointwise pow operation.
pub fn pow(&self, rhs: &Tensor) -> Result<Self> {
rhs.mul(&self.log()?)?.exp()
}
/// Broadcasting version of `pow`.
pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> {
rhs.broadcast_mul(&self.log()?)?.exp()
}
/// Returns a view of which contains all slices of size `size` from self tensor in the dimension
/// `dim` and stepped by `step`.
pub fn unfold<D: Dim>(&self, dim: D, size: usize, step: usize) -> Result<Self> {
// https://github.com/pytorch/pytorch/blob/75b0720a97ac5d82e8a7a1a6ae7c5f7a87d7183d/aten/src/ATen/native/TensorShape.cpp#L3785-L3804
let mut sizes = self.dims().to_vec();
let mut strides = self.stride().to_vec();
let dim = dim.to_index(self.shape(), "unfold")?;
let max_len = if self.dims().is_empty() {
1
} else {
sizes[dim]
};
if size > max_len {
bail!(
"unsqueeze: maximum size for tensor at dimension {dim} is {max_len} but size is {size}"
)
}
sizes.push(size);
strides.push(if self.dims().is_empty() {
1
} else {
strides[dim]
});
if !self.dims().is_empty() {
sizes[dim] = ((sizes[dim] as f32 - size as f32) / step as f32 + 1.) as usize;
strides[dim] *= step;
}
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
layout: Layout::new(sizes.into(), strides, self.layout.start_offset()),
op: BackpropOp::new1(self, Op::Reshape),
is_variable: false,
dtype: self.dtype,
device: self.device.clone(),
};
Ok(Tensor(Arc::new(tensor_)))
}
}
macro_rules! bin_trait {
($trait:ident, $fn1:ident, $mul:expr, $add:expr) => {
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<B> for Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: B) -> Self::Output {
Tensor::$fn1(&self, rhs.borrow())
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<B> for &Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: B) -> Self::Output {
Tensor::$fn1(&self, rhs.borrow())
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Tensor> for Result<B> {
type Output = Result<Tensor>;
fn $fn1(self, rhs: Tensor) -> Self::Output {
Tensor::$fn1(self?.borrow(), &rhs)
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<&Tensor> for Result<B> {
type Output = Result<Tensor>;
fn $fn1(self, rhs: &Tensor) -> Self::Output {
Tensor::$fn1(self?.borrow(), rhs)
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Result<B>> for Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: Result<B>) -> Self::Output {
Tensor::$fn1(&self, rhs?.borrow())
}
}
impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Result<B>> for &Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: Result<B>) -> Self::Output {
Tensor::$fn1(&self, rhs?.borrow())
}
}
impl std::ops::$trait<f64> for Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: f64) -> Self::Output {
self.affine($mul(rhs), $add(rhs))
}
}
impl std::ops::$trait<f64> for &Tensor {
type Output = Result<Tensor>;
fn $fn1(self, rhs: f64) -> Self::Output {
self.affine($mul(rhs), $add(rhs))
}
}
};
}
bin_trait!(Add, add, |_| 1., |v| v);
bin_trait!(Sub, sub, |_| 1., |v: f64| -v);
bin_trait!(Mul, mul, |v| v, |_| 0.);
bin_trait!(Div, div, |v| 1. / v, |_| 0.);
impl std::ops::Add<Tensor> for f64 {
type Output = Result<Tensor>;
fn add(self, rhs: Tensor) -> Self::Output {
rhs + self
}
}
impl std::ops::Add<&Tensor> for f64 {
type Output = Result<Tensor>;
fn add(self, rhs: &Tensor) -> Self::Output {
rhs + self
}
}
impl std::ops::Mul<Tensor> for f64 {
type Output = Result<Tensor>;
fn mul(self, rhs: Tensor) -> Self::Output {
rhs * self
}
}
impl std::ops::Mul<&Tensor> for f64 {
type Output = Result<Tensor>;
fn mul(self, rhs: &Tensor) -> Self::Output {
rhs * self
}
}
impl std::ops::Sub<Tensor> for f64 {
type Output = Result<Tensor>;
fn sub(self, rhs: Tensor) -> Self::Output {
rhs.affine(-1., self)
}
}
impl std::ops::Sub<&Tensor> for f64 {
type Output = Result<Tensor>;
fn sub(self, rhs: &Tensor) -> Self::Output {
rhs.affine(-1., self)
}
}
impl std::ops::Div<Tensor> for f64 {
type Output = Result<Tensor>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Tensor) -> Self::Output {
rhs.recip()? * self
}
}
impl std::ops::Div<&Tensor> for f64 {
type Output = Result<Tensor>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: &Tensor) -> Self::Output {
rhs.recip()? * self
}
}