diffusion_rs_common/nn/
batch_norm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! Batch Normalization.
//!
//! This layer applies Batch Normalization over a mini-batch of inputs as described in [`Batch
//! Normalization`]. The input is expected to have at least three dimensions.
//!
//! Note that this implementation is for inference only, there is no possibility to track the
//! running stats.
//!
//! [`Batch Normalization`]: https://arxiv.org/abs/1502.03167
use crate::core::{DType, Result, Tensor, Var};

#[derive(Debug, Clone, Copy, PartialEq)]
pub struct BatchNormConfig {
    pub eps: f64,
    pub remove_mean: bool,

    /// The meaning of affine here is different from LayerNorm: when false there is no learnable
    /// parameter at all, 1 used for gamma and 0 for beta.
    pub affine: bool,

    /// Controls exponential moving average of running stats. Defaults to 0.1
    ///
    /// `running_stat * (1.0 - momentum) + stat * momentum`.
    pub momentum: f64,
}

impl Default for BatchNormConfig {
    fn default() -> Self {
        Self {
            eps: 1e-5,
            remove_mean: true,
            affine: true,
            momentum: 0.1,
        }
    }
}

impl From<f64> for BatchNormConfig {
    fn from(eps: f64) -> Self {
        Self {
            eps,
            ..Default::default()
        }
    }
}

#[derive(Clone, Debug)]
pub struct BatchNorm {
    running_mean: Var,
    running_var: Var,
    weight_and_bias: Option<(Tensor, Tensor)>,
    remove_mean: bool,
    eps: f64,
    momentum: f64,
}

impl BatchNorm {
    fn check_validity(&self, num_features: usize) -> Result<()> {
        if self.eps < 0. {
            crate::bail!("batch-norm eps cannot be negative {}", self.eps)
        }
        if !(0.0..=1.0).contains(&self.momentum) {
            crate::bail!(
                "batch-norm momentum must be between 0 and 1, is {}",
                self.momentum
            )
        }
        if self.running_mean.dims() != [num_features] {
            crate::bail!(
                "batch-norm running mean has unexpected shape {:?} should have shape [{num_features}]",
                self.running_mean.shape(),
            )
        }
        if self.running_var.dims() != [num_features] {
            crate::bail!(
                "batch-norm running variance has unexpected shape {:?} should have shape [{num_features}]",
                self.running_var.shape(),
            )
        }
        if let Some((ref weight, ref bias)) = self.weight_and_bias.as_ref() {
            if weight.dims() != [num_features] {
                crate::bail!(
                    "batch-norm weight has unexpected shape {:?} should have shape [{num_features}]",
                    weight.shape(),
                )
            }
            if bias.dims() != [num_features] {
                crate::bail!(
                    "batch-norm weight has unexpected shape {:?} should have shape [{num_features}]",
                    bias.shape(),
                )
            }
        }
        Ok(())
    }

    pub fn new(
        num_features: usize,
        running_mean: Tensor,
        running_var: Tensor,
        weight: Tensor,
        bias: Tensor,
        eps: f64,
    ) -> Result<Self> {
        let out = Self {
            running_mean: Var::from_tensor(&running_mean)?,
            running_var: Var::from_tensor(&running_var)?,
            weight_and_bias: Some((weight, bias)),
            remove_mean: true,
            eps,
            momentum: 0.1,
        };
        out.check_validity(num_features)?;
        Ok(out)
    }

    pub fn new_no_bias(
        num_features: usize,
        running_mean: Tensor,
        running_var: Tensor,
        eps: f64,
    ) -> Result<Self> {
        let out = Self {
            running_mean: Var::from_tensor(&running_mean)?,
            running_var: Var::from_tensor(&running_var)?,
            weight_and_bias: None,
            remove_mean: true,
            eps,
            momentum: 0.1,
        };
        out.check_validity(num_features)?;
        Ok(out)
    }

    pub fn new_with_momentum(
        num_features: usize,
        running_mean: Tensor,
        running_var: Tensor,
        weight: Tensor,
        bias: Tensor,
        eps: f64,
        momentum: f64,
    ) -> Result<Self> {
        let out = Self {
            running_mean: Var::from_tensor(&running_mean)?,
            running_var: Var::from_tensor(&running_var)?,
            weight_and_bias: Some((weight, bias)),
            remove_mean: true,
            eps,
            momentum,
        };
        out.check_validity(num_features)?;
        Ok(out)
    }

    pub fn new_no_bias_with_momentum(
        num_features: usize,
        running_mean: Tensor,
        running_var: Tensor,
        eps: f64,
        momentum: f64,
    ) -> Result<Self> {
        let out = Self {
            running_mean: Var::from_tensor(&running_mean)?,
            running_var: Var::from_tensor(&running_var)?,
            weight_and_bias: None,
            remove_mean: true,
            eps,
            momentum,
        };
        out.check_validity(num_features)?;
        Ok(out)
    }

    pub fn running_mean(&self) -> &Tensor {
        self.running_mean.as_tensor()
    }

    pub fn running_var(&self) -> &Tensor {
        self.running_var.as_tensor()
    }

    pub fn eps(&self) -> f64 {
        self.eps
    }

    pub fn weight_and_bias(&self) -> Option<(&Tensor, &Tensor)> {
        self.weight_and_bias.as_ref().map(|v| (&v.0, &v.1))
    }

    pub fn momentum(&self) -> f64 {
        self.momentum
    }

    pub fn forward_train(&self, x: &Tensor) -> Result<Tensor> {
        let num_features = self.running_mean.as_tensor().dim(0)?;
        let x_dtype = x.dtype();
        let internal_dtype = match x_dtype {
            DType::F16 | DType::BF16 => DType::F32,
            d => d,
        };
        if x.rank() < 2 {
            crate::bail!(
                "batch-norm input tensor must have at least two dimensions ({:?})",
                x.shape()
            )
        }
        if x.dim(1)? != num_features {
            crate::bail!(
                "batch-norm input doesn't have the expected number of features ({:?} <> {})",
                x.shape(),
                num_features
            )
        }
        let x = x.to_dtype(internal_dtype)?;
        let x = x.transpose(0, 1)?;
        let x_dims_post_transpose = x.dims();
        // Flatten all the dimensions exception the channel one as this performs a Spatial Batch
        // Normalization.
        let x = x.flatten_from(1)?.contiguous()?;
        let x = if self.remove_mean {
            // The mean is taken over dim 1 as this is the batch dim after the transpose(0, 1) above.
            let mean_x = x.mean_keepdim(1)?;
            let updated_running_mean = ((self.running_mean.as_tensor() * (1.0 - self.momentum))?
                + (mean_x.flatten_all()? * self.momentum)?)?;
            self.running_mean.set(&updated_running_mean)?;
            x.broadcast_sub(&mean_x)?
        } else {
            x
        };
        // The mean is taken over dim 1 as this is the batch dim after the transpose(0, 1) above.
        let norm_x = x.sqr()?.mean_keepdim(1)?;
        let updated_running_var = {
            let batch_size = x.dim(1)? as f64;
            let running_var_weight = 1.0 - self.momentum;
            let norm_x_weight = self.momentum * batch_size / (batch_size - 1.0);
            ((self.running_var.as_tensor() * running_var_weight)?
                + (&norm_x.flatten_all()? * norm_x_weight)?)?
        };
        self.running_var.set(&updated_running_var)?;
        let x = x
            .broadcast_div(&(norm_x + self.eps)?.sqrt()?)?
            .to_dtype(x_dtype)?;
        let x = match &self.weight_and_bias {
            None => x,
            Some((weight, bias)) => {
                let weight = weight.reshape(((), 1))?;
                let bias = bias.reshape(((), 1))?;
                x.broadcast_mul(&weight)?.broadcast_add(&bias)?
            }
        };
        x.reshape(x_dims_post_transpose)?.transpose(0, 1)
    }

    fn forward_eval(&self, x: &Tensor) -> Result<Tensor> {
        let target_shape: Vec<usize> = x
            .dims()
            .iter()
            .enumerate()
            .map(|(idx, v)| if idx == 1 { *v } else { 1 })
            .collect();
        let target_shape = target_shape.as_slice();

        let x = x
            .broadcast_sub(
                &self
                    .running_mean
                    .as_detached_tensor()
                    .reshape(target_shape)?,
            )?
            .broadcast_div(
                &(self
                    .running_var
                    .as_detached_tensor()
                    .reshape(target_shape)?
                    + self.eps)?
                    .sqrt()?,
            )?;

        match &self.weight_and_bias {
            None => Ok(x),
            Some((weight, bias)) => {
                let weight = weight.reshape(target_shape)?;
                let bias = bias.reshape(target_shape)?;
                x.broadcast_mul(&weight)?.broadcast_add(&bias)
            }
        }
    }
}

impl crate::nn::ModuleT for BatchNorm {
    fn forward_t(&self, x: &Tensor, train: bool) -> Result<Tensor> {
        if train {
            self.forward_train(x)
        } else {
            self.forward_eval(x)
        }
    }
}

pub fn batch_norm<C: Into<BatchNormConfig>>(
    num_features: usize,
    config: C,
    vb: crate::nn::VarBuilder,
) -> Result<BatchNorm> {
    use crate::nn::Init;
    let config = config.into();
    if config.eps < 0. {
        crate::bail!("batch-norm eps cannot be negative {}", config.eps)
    }
    let running_mean = vb.get_with_hints(num_features, "running_mean", Init::Const(0.))?;
    let running_var = vb.get_with_hints(num_features, "running_var", Init::Const(1.))?;
    let weight_and_bias = if config.affine {
        let weight = vb.get_with_hints(num_features, "weight", Init::Const(1.))?;
        let bias = vb.get_with_hints(num_features, "bias", Init::Const(0.))?;
        Some((weight, bias))
    } else {
        None
    };
    Ok(BatchNorm {
        running_mean: Var::from_tensor(&running_mean)?,
        running_var: Var::from_tensor(&running_var)?,
        weight_and_bias,
        remove_mean: config.remove_mean,
        eps: config.eps,
        momentum: config.momentum,
    })
}