diffusion_rs_common/nn/init.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
//! Variable initialization.
// This is based on:
// https://github.com/pytorch/pytorch/blob/07107919297db3f8ab37f11c12666b6d6d5f692e/torch/nn/init.py#
use crate::core::{DType, Device, Result, Shape, Tensor, Var};
/// Number of features as input or output of a layer.
/// In Kaiming initialization, choosing `FanIn` preserves
/// the magnitude of the variance of the weights in the
/// forward pass, choosing `FanOut` preserves this
/// magnitude in the backward pass.
#[derive(Debug, Copy, Clone)]
pub enum FanInOut {
FanIn,
FanOut,
}
impl FanInOut {
/// Compute the fan-in or fan-out value for a weight tensor of
/// the specified dimensions.
/// <https://github.com/pytorch/pytorch/blob/dbeacf11820e336e803bb719b7aaaf2125ae4d9c/torch/nn/init.py#L284>
pub fn for_shape(&self, shape: &Shape) -> usize {
let dims = shape.dims();
let receptive_field_size: usize = dims.iter().skip(2).product();
match &self {
FanInOut::FanIn => {
if dims.len() < 2 {
1
} else {
dims[1] * receptive_field_size
}
}
FanInOut::FanOut => {
if dims.is_empty() {
1
} else {
dims[0] * receptive_field_size
}
}
}
}
}
#[derive(Debug, Copy, Clone)]
pub enum NormalOrUniform {
Normal,
Uniform,
}
/// The non-linear function that follows this layer. ReLU is the
/// recommended value.
#[derive(Debug, Copy, Clone)]
pub enum NonLinearity {
ReLU,
Linear,
Sigmoid,
Tanh,
SELU,
ExplicitGain(f64),
}
impl NonLinearity {
// https://github.com/pytorch/pytorch/blob/07107919297db3f8ab37f11c12666b6d6d5f692e/torch/nn/init.py#L67
pub fn gain(&self) -> f64 {
match *self {
NonLinearity::ReLU => 2f64.sqrt(),
NonLinearity::Tanh => 5. / 3.,
NonLinearity::Linear | NonLinearity::Sigmoid => 1.,
NonLinearity::SELU => 0.75,
NonLinearity::ExplicitGain(g) => g,
}
}
}
/// Variable initializations.
#[derive(Debug, Copy, Clone)]
pub enum Init {
/// Constant value.
Const(f64),
/// Random normal with some mean and standard deviation.
Randn { mean: f64, stdev: f64 },
/// Uniform initialization between some lower and upper bounds.
Uniform { lo: f64, up: f64 },
/// Kaiming uniform initialization.
/// See "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification"
/// He, K. et al. (2015). This uses a uniform distribution.
Kaiming {
dist: NormalOrUniform,
fan: FanInOut,
non_linearity: NonLinearity,
},
}
pub const ZERO: Init = Init::Const(0.);
pub const ONE: Init = Init::Const(1.);
pub const DEFAULT_KAIMING_UNIFORM: Init = Init::Kaiming {
dist: NormalOrUniform::Uniform,
fan: FanInOut::FanIn,
non_linearity: NonLinearity::ReLU,
};
pub const DEFAULT_KAIMING_NORMAL: Init = Init::Kaiming {
dist: NormalOrUniform::Normal,
fan: FanInOut::FanIn,
non_linearity: NonLinearity::ReLU,
};
impl Init {
/// Creates a new tensor with the specified shape, device, and initialization.
pub fn var<S: Into<Shape>>(&self, s: S, dtype: DType, device: &Device) -> Result<Var> {
match self {
Self::Const(v) if *v == 0. => Var::zeros(s, dtype, device),
Self::Const(v) if *v == 1. => Var::ones(s, dtype, device),
Self::Const(cst) => {
Var::from_tensor(&Tensor::ones(s, dtype, device)?.affine(*cst, 0.)?)
}
Self::Uniform { lo, up } => Var::rand_f64(*lo, *up, s, dtype, device),
Self::Randn { mean, stdev } => Var::randn_f64(*mean, *stdev, s, dtype, device),
Self::Kaiming {
dist,
fan,
non_linearity,
} => {
let s = s.into();
let fan = fan.for_shape(&s);
let gain = non_linearity.gain();
let std = gain / (fan as f64).sqrt();
match dist {
NormalOrUniform::Uniform => {
let bound = 3f64.sqrt() * std;
Var::rand_f64(-bound, bound, s, dtype, device)
}
NormalOrUniform::Normal => Var::randn_f64(0., std, s, dtype, device),
}
}
}
}
}
impl Default for Init {
fn default() -> Self {
Self::Const(0.)
}
}