diffusion_rs_common/nn/
optim.rsuse crate::core::{Result, Tensor, Var};
pub trait Optimizer: Sized {
type Config: Sized;
fn new(vars: Vec<Var>, config: Self::Config) -> Result<Self>;
fn step(&mut self, grads: &crate::core::backprop::GradStore) -> Result<()>;
fn learning_rate(&self) -> f64;
fn set_learning_rate(&mut self, lr: f64);
fn empty(config: Self::Config) -> Result<Self> {
Self::new(vec![], config)
}
fn backward_step(&mut self, loss: &Tensor) -> Result<()> {
let grads = loss.backward()?;
self.step(&grads)
}
fn from_slice(vars: &[&Var], config: Self::Config) -> Result<Self> {
let vars: Vec<_> = vars.iter().map(|&v| v.clone()).collect();
Self::new(vars, config)
}
}
#[derive(Debug)]
pub struct SGD {
vars: Vec<Var>,
learning_rate: f64,
}
impl Optimizer for SGD {
type Config = f64;
fn new(vars: Vec<Var>, learning_rate: f64) -> Result<Self> {
let vars = vars
.into_iter()
.filter(|var| var.dtype().is_float())
.collect();
Ok(Self {
vars,
learning_rate,
})
}
fn learning_rate(&self) -> f64 {
self.learning_rate
}
fn step(&mut self, grads: &crate::core::backprop::GradStore) -> Result<()> {
for var in self.vars.iter() {
if let Some(grad) = grads.get(var) {
var.set(&var.sub(&(grad * self.learning_rate)?)?)?;
}
}
Ok(())
}
fn set_learning_rate(&mut self, lr: f64) {
self.learning_rate = lr
}
}
impl SGD {
pub fn into_inner(self) -> Vec<Var> {
self.vars
}
pub fn push(&mut self, var: &Var) {
self.vars.push(var.clone())
}
}
#[derive(Clone, Debug)]
pub struct ParamsAdamW {
pub lr: f64,
pub beta1: f64,
pub beta2: f64,
pub eps: f64,
pub weight_decay: f64,
}
impl Default for ParamsAdamW {
fn default() -> Self {
Self {
lr: 0.001,
beta1: 0.9,
beta2: 0.999,
eps: 1e-8,
weight_decay: 0.01,
}
}
}
#[derive(Debug)]
struct VarAdamW {
var: Var,
first_moment: Var,
second_moment: Var,
}
#[derive(Debug)]
pub struct AdamW {
vars: Vec<VarAdamW>,
step_t: usize,
params: ParamsAdamW,
}
impl Optimizer for AdamW {
type Config = ParamsAdamW;
fn new(vars: Vec<Var>, params: ParamsAdamW) -> Result<Self> {
let vars = vars
.into_iter()
.filter(|var| var.dtype().is_float())
.map(|var| {
let dtype = var.dtype();
let shape = var.shape();
let device = var.device();
let first_moment = Var::zeros(shape, dtype, device)?;
let second_moment = Var::zeros(shape, dtype, device)?;
Ok(VarAdamW {
var,
first_moment,
second_moment,
})
})
.collect::<Result<Vec<_>>>()?;
Ok(Self {
vars,
params,
step_t: 0,
})
}
fn learning_rate(&self) -> f64 {
self.params.lr
}
fn set_learning_rate(&mut self, lr: f64) {
self.params.lr = lr
}
fn step(&mut self, grads: &crate::core::backprop::GradStore) -> Result<()> {
self.step_t += 1;
let lr = self.params.lr;
let lambda = self.params.weight_decay;
let lr_lambda = lr * lambda;
let beta1 = self.params.beta1;
let beta2 = self.params.beta2;
let scale_m = 1f64 / (1f64 - beta1.powi(self.step_t as i32));
let scale_v = 1f64 / (1f64 - beta2.powi(self.step_t as i32));
for var in self.vars.iter() {
let theta = &var.var;
let m = &var.first_moment;
let v = &var.second_moment;
if let Some(g) = grads.get(theta) {
let next_m = ((m.as_tensor() * beta1)? + (g * (1.0 - beta1))?)?;
let next_v = ((v.as_tensor() * beta2)? + (g.sqr()? * (1.0 - beta2))?)?;
let m_hat = (&next_m * scale_m)?;
let v_hat = (&next_v * scale_v)?;
let next_theta = (theta.as_tensor() * (1f64 - lr_lambda))?;
let adjusted_grad = (m_hat / (v_hat.sqrt()? + self.params.eps)?)?;
let next_theta = (next_theta - (adjusted_grad * lr)?)?;
m.set(&next_m)?;
v.set(&next_v)?;
theta.set(&next_theta)?;
}
}
Ok(())
}
}
impl AdamW {
pub fn new_lr(vars: Vec<Var>, learning_rate: f64) -> Result<Self> {
let params = ParamsAdamW {
lr: learning_rate,
..ParamsAdamW::default()
};
Self::new(vars, params)
}
pub fn params(&self) -> &ParamsAdamW {
&self.params
}
pub fn set_params(&mut self, params: ParamsAdamW) {
self.params = params;
}
}