diffusion_rs_common/nn/
rnn.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
//! Recurrent Neural Networks
use crate::core::{DType, Device, IndexOp, Result, Tensor};

/// Trait for Recurrent Neural Networks.
#[allow(clippy::upper_case_acronyms)]
pub trait RNN {
    type State: Clone;

    /// A zero state from which the recurrent network is usually initialized.
    fn zero_state(&self, batch_dim: usize) -> Result<Self::State>;

    /// Applies a single step of the recurrent network.
    ///
    /// The input should have dimensions [batch_size, features].
    fn step(&self, input: &Tensor, state: &Self::State) -> Result<Self::State>;

    /// Applies multiple steps of the recurrent network.
    ///
    /// The input should have dimensions [batch_size, seq_len, features].
    /// The initial state is the result of applying zero_state.
    fn seq(&self, input: &Tensor) -> Result<Vec<Self::State>> {
        let batch_dim = input.dim(0)?;
        let state = self.zero_state(batch_dim)?;
        self.seq_init(input, &state)
    }

    /// Applies multiple steps of the recurrent network.
    ///
    /// The input should have dimensions [batch_size, seq_len, features].
    fn seq_init(&self, input: &Tensor, init_state: &Self::State) -> Result<Vec<Self::State>> {
        let (_b_size, seq_len, _features) = input.dims3()?;
        let mut output = Vec::with_capacity(seq_len);
        for seq_index in 0..seq_len {
            let input = input.i((.., seq_index, ..))?.contiguous()?;
            let state = if seq_index == 0 {
                self.step(&input, init_state)?
            } else {
                self.step(&input, &output[seq_index - 1])?
            };
            output.push(state);
        }
        Ok(output)
    }

    /// Converts a sequence of state to a tensor.
    fn states_to_tensor(&self, states: &[Self::State]) -> Result<Tensor>;
}

/// The state for a LSTM network, this contains two tensors.
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone)]
pub struct LSTMState {
    pub h: Tensor,
    pub c: Tensor,
}

impl LSTMState {
    pub fn new(h: Tensor, c: Tensor) -> Self {
        LSTMState { h, c }
    }

    /// The hidden state vector, which is also the output of the LSTM.
    pub fn h(&self) -> &Tensor {
        &self.h
    }

    /// The cell state vector.
    pub fn c(&self) -> &Tensor {
        &self.c
    }
}

#[derive(Debug, Clone, Copy)]
pub enum Direction {
    Forward,
    Backward,
}

#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone, Copy)]
pub struct LSTMConfig {
    pub w_ih_init: super::Init,
    pub w_hh_init: super::Init,
    pub b_ih_init: Option<super::Init>,
    pub b_hh_init: Option<super::Init>,
    pub layer_idx: usize,
    pub direction: Direction,
}

impl Default for LSTMConfig {
    fn default() -> Self {
        Self {
            w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM,
            w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM,
            b_ih_init: Some(super::Init::Const(0.)),
            b_hh_init: Some(super::Init::Const(0.)),
            layer_idx: 0,
            direction: Direction::Forward,
        }
    }
}

impl LSTMConfig {
    pub fn default_no_bias() -> Self {
        Self {
            w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM,
            w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM,
            b_ih_init: None,
            b_hh_init: None,
            layer_idx: 0,
            direction: Direction::Forward,
        }
    }
}

/// A Long Short-Term Memory (LSTM) layer.
///
/// <https://en.wikipedia.org/wiki/Long_short-term_memory>
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone, Debug)]
pub struct LSTM {
    w_ih: Tensor,
    w_hh: Tensor,
    b_ih: Option<Tensor>,
    b_hh: Option<Tensor>,
    hidden_dim: usize,
    config: LSTMConfig,
    device: Device,
    dtype: DType,
}

impl LSTM {
    /// Creates a LSTM layer.
    pub fn new(
        in_dim: usize,
        hidden_dim: usize,
        config: LSTMConfig,
        vb: crate::nn::VarBuilder,
    ) -> Result<Self> {
        let layer_idx = config.layer_idx;
        let direction_str = match config.direction {
            Direction::Forward => "",
            Direction::Backward => "_reverse",
        };
        let w_ih = vb.get_with_hints(
            (4 * hidden_dim, in_dim),
            &format!("weight_ih_l{layer_idx}{direction_str}"), // Only a single layer is supported.
            config.w_ih_init,
        )?;
        let w_hh = vb.get_with_hints(
            (4 * hidden_dim, hidden_dim),
            &format!("weight_hh_l{layer_idx}{direction_str}"), // Only a single layer is supported.
            config.w_hh_init,
        )?;
        let b_ih = match config.b_ih_init {
            Some(init) => Some(vb.get_with_hints(
                4 * hidden_dim,
                &format!("bias_ih_l{layer_idx}{direction_str}"),
                init,
            )?),
            None => None,
        };
        let b_hh = match config.b_hh_init {
            Some(init) => Some(vb.get_with_hints(
                4 * hidden_dim,
                &format!("bias_hh_l{layer_idx}{direction_str}"),
                init,
            )?),
            None => None,
        };
        Ok(Self {
            w_ih,
            w_hh,
            b_ih,
            b_hh,
            hidden_dim,
            config,
            device: vb.device().clone(),
            dtype: vb.dtype(),
        })
    }

    pub fn config(&self) -> &LSTMConfig {
        &self.config
    }
}

/// Creates a LSTM layer.
pub fn lstm(
    in_dim: usize,
    hidden_dim: usize,
    config: LSTMConfig,
    vb: crate::nn::VarBuilder,
) -> Result<LSTM> {
    LSTM::new(in_dim, hidden_dim, config, vb)
}

impl RNN for LSTM {
    type State = LSTMState;

    fn zero_state(&self, batch_dim: usize) -> Result<Self::State> {
        let zeros =
            Tensor::zeros((batch_dim, self.hidden_dim), self.dtype, &self.device)?.contiguous()?;
        Ok(Self::State {
            h: zeros.clone(),
            c: zeros.clone(),
        })
    }

    fn step(&self, input: &Tensor, in_state: &Self::State) -> Result<Self::State> {
        let w_ih = input.matmul(&self.w_ih.t()?)?;
        let w_hh = in_state.h.matmul(&self.w_hh.t()?)?;
        let w_ih = match &self.b_ih {
            None => w_ih,
            Some(b_ih) => w_ih.broadcast_add(b_ih)?,
        };
        let w_hh = match &self.b_hh {
            None => w_hh,
            Some(b_hh) => w_hh.broadcast_add(b_hh)?,
        };
        let chunks = (&w_ih + &w_hh)?.chunk(4, 1)?;
        let in_gate = crate::nn::ops::sigmoid(&chunks[0])?;
        let forget_gate = crate::nn::ops::sigmoid(&chunks[1])?;
        let cell_gate = chunks[2].tanh()?;
        let out_gate = crate::nn::ops::sigmoid(&chunks[3])?;

        let next_c = ((forget_gate * &in_state.c)? + (in_gate * cell_gate)?)?;
        let next_h = (out_gate * next_c.tanh()?)?;
        Ok(LSTMState {
            c: next_c,
            h: next_h,
        })
    }

    fn states_to_tensor(&self, states: &[Self::State]) -> Result<Tensor> {
        let states = states.iter().map(|s| s.h.clone()).collect::<Vec<_>>();
        Tensor::stack(&states, 1)
    }
}

/// The state for a GRU network, this contains a single tensor.
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone)]
pub struct GRUState {
    pub h: Tensor,
}

impl GRUState {
    /// The hidden state vector, which is also the output of the LSTM.
    pub fn h(&self) -> &Tensor {
        &self.h
    }
}

#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone, Copy)]
pub struct GRUConfig {
    pub w_ih_init: super::Init,
    pub w_hh_init: super::Init,
    pub b_ih_init: Option<super::Init>,
    pub b_hh_init: Option<super::Init>,
}

impl Default for GRUConfig {
    fn default() -> Self {
        Self {
            w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM,
            w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM,
            b_ih_init: Some(super::Init::Const(0.)),
            b_hh_init: Some(super::Init::Const(0.)),
        }
    }
}

impl GRUConfig {
    pub fn default_no_bias() -> Self {
        Self {
            w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM,
            w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM,
            b_ih_init: None,
            b_hh_init: None,
        }
    }
}

/// A Gated Recurrent Unit (GRU) layer.
///
/// <https://en.wikipedia.org/wiki/Gated_recurrent_unit>
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone, Debug)]
pub struct GRU {
    w_ih: Tensor,
    w_hh: Tensor,
    b_ih: Option<Tensor>,
    b_hh: Option<Tensor>,
    hidden_dim: usize,
    config: GRUConfig,
    device: Device,
    dtype: DType,
}

impl GRU {
    /// Creates a GRU layer.
    pub fn new(
        in_dim: usize,
        hidden_dim: usize,
        config: GRUConfig,
        vb: crate::nn::VarBuilder,
    ) -> Result<Self> {
        let w_ih = vb.get_with_hints(
            (3 * hidden_dim, in_dim),
            "weight_ih_l0", // Only a single layer is supported.
            config.w_ih_init,
        )?;
        let w_hh = vb.get_with_hints(
            (3 * hidden_dim, hidden_dim),
            "weight_hh_l0", // Only a single layer is supported.
            config.w_hh_init,
        )?;
        let b_ih = match config.b_ih_init {
            Some(init) => Some(vb.get_with_hints(3 * hidden_dim, "bias_ih_l0", init)?),
            None => None,
        };
        let b_hh = match config.b_hh_init {
            Some(init) => Some(vb.get_with_hints(3 * hidden_dim, "bias_hh_l0", init)?),
            None => None,
        };
        Ok(Self {
            w_ih,
            w_hh,
            b_ih,
            b_hh,
            hidden_dim,
            config,
            device: vb.device().clone(),
            dtype: vb.dtype(),
        })
    }

    pub fn config(&self) -> &GRUConfig {
        &self.config
    }
}

pub fn gru(
    in_dim: usize,
    hidden_dim: usize,
    config: GRUConfig,
    vb: crate::nn::VarBuilder,
) -> Result<GRU> {
    GRU::new(in_dim, hidden_dim, config, vb)
}

impl RNN for GRU {
    type State = GRUState;

    fn zero_state(&self, batch_dim: usize) -> Result<Self::State> {
        let h =
            Tensor::zeros((batch_dim, self.hidden_dim), self.dtype, &self.device)?.contiguous()?;
        Ok(Self::State { h })
    }

    fn step(&self, input: &Tensor, in_state: &Self::State) -> Result<Self::State> {
        let w_ih = input.matmul(&self.w_ih.t()?)?;
        let w_hh = in_state.h.matmul(&self.w_hh.t()?)?;
        let w_ih = match &self.b_ih {
            None => w_ih,
            Some(b_ih) => w_ih.broadcast_add(b_ih)?,
        };
        let w_hh = match &self.b_hh {
            None => w_hh,
            Some(b_hh) => w_hh.broadcast_add(b_hh)?,
        };
        let chunks_ih = w_ih.chunk(3, 1)?;
        let chunks_hh = w_hh.chunk(3, 1)?;
        let r_gate = crate::nn::ops::sigmoid(&(&chunks_ih[0] + &chunks_hh[0])?)?;
        let z_gate = crate::nn::ops::sigmoid(&(&chunks_ih[1] + &chunks_hh[1])?)?;
        let n_gate = (&chunks_ih[2] + (r_gate * &chunks_hh[2])?)?.tanh();

        let next_h = ((&z_gate * &in_state.h)? - ((&z_gate - 1.)? * n_gate)?)?;
        Ok(GRUState { h: next_h })
    }

    fn states_to_tensor(&self, states: &[Self::State]) -> Result<Tensor> {
        let states = states.iter().map(|s| s.h.clone()).collect::<Vec<_>>();
        Tensor::cat(&states, 1)
    }
}