diffusion_rs_common/nn/
var_builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
//! A `VarBuilder` is used to retrieve variables used by a model. These variables can either come
//! from a pre-trained checkpoint, e.g. using `VarBuilder::from_mmaped_safetensors`, or initialized
//! for training, e.g. using `VarBuilder::from_varmap`.
use crate::core::{safetensors::Load, DType, Device, Error, Result, Shape, Tensor};
use crate::nn::VarMap;
use safetensors::{slice::IndexOp, tensor::SafeTensors};
use std::collections::HashMap;
use std::sync::Arc;

/// A structure used to retrieve variables, these variables can either come from storage or be
/// generated via some form of initialization.
///
/// The way to retrieve variables is defined in the backend embedded in the `VarBuilder`.
pub struct VarBuilderArgs<'a, B: Backend> {
    data: Arc<TensorData<B>>,
    path: Vec<String>,
    pub dtype: DType,
    _phantom: std::marker::PhantomData<&'a B>,
}

impl<B: Backend> Clone for VarBuilderArgs<'_, B> {
    fn clone(&self) -> Self {
        Self {
            data: self.data.clone(),
            path: self.path.clone(),
            dtype: self.dtype,
            _phantom: self._phantom,
        }
    }
}

/// A simple `VarBuilder`, this is less generic than `VarBuilderArgs` but should cover most common
/// use cases.
pub type VarBuilder<'a> = VarBuilderArgs<'a, Box<dyn SimpleBackend + 'a>>;

struct TensorData<B: Backend> {
    backend: Arc<B>,
    pub dtype: DType,
    pub device: Device,
}

/// A trait that defines how tensor data is retrieved.
///
/// Typically this would use disk storage in some specific format, or random initialization.
/// Note that there is a specialized version of this trait (`SimpleBackend`) that can be used most
/// of the time. The main restriction is that it doesn't allow for specific args (besides
/// initialization hints).
pub trait Backend: Send + Sync {
    type Hints: Default;

    /// Retrieve a tensor with some target shape.
    fn get(
        &self,
        s: Shape,
        name: &str,
        h: Self::Hints,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor>;

    /// Retrieve a tensor based on the name.
    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor>;

    fn contains_tensor(&self, name: &str) -> bool;
}

pub trait SimpleBackend: Send + Sync {
    /// Retrieve a tensor based on a target name and shape.
    fn get(
        &self,
        s: Shape,
        name: &str,
        h: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor>;

    /// Retrieve a tensor based on the name.
    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor>;

    fn contains_tensor(&self, name: &str) -> bool;
}

impl Backend for Box<dyn SimpleBackend + '_> {
    type Hints = crate::nn::Init;
    fn get(
        &self,
        s: Shape,
        name: &str,
        h: Self::Hints,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        self.as_ref().get(s, name, h, dtype, dev)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        self.as_ref().get_unchecked(name, dtype, dev)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.as_ref().contains_tensor(name)
    }
}

impl<B: Backend> VarBuilderArgs<'_, B> {
    pub fn new_with_args(backend: B, dtype: DType, dev: &Device) -> Self {
        let data = TensorData {
            backend: Arc::new(backend),
            dtype,
            device: dev.clone(),
        };
        Self {
            data: Arc::new(data),
            path: vec![],
            dtype,
            _phantom: std::marker::PhantomData,
        }
    }

    /// Returns the prefix of the `VarBuilder`.
    pub fn prefix(&self) -> String {
        self.path.join(".")
    }

    /// Returns a new `VarBuilder` using the root path.
    pub fn root(&self) -> Self {
        Self {
            data: self.data.clone(),
            path: vec![],
            dtype: self.dtype,
            _phantom: std::marker::PhantomData,
        }
    }

    /// Returns a new `VarBuilder` with the prefix set to `prefix`.
    pub fn set_prefix(&self, prefix: impl ToString) -> Self {
        Self {
            data: self.data.clone(),
            path: vec![prefix.to_string()],
            dtype: self.dtype,
            _phantom: std::marker::PhantomData,
        }
    }

    /// Return a new `VarBuilder` adding `s` to the current prefix. This can be think of as `cd`
    /// into a directory.
    pub fn push_prefix<S: ToString>(&self, s: S) -> Self {
        let mut path = self.path.clone();
        path.push(s.to_string());
        Self {
            data: self.data.clone(),
            path,
            dtype: self.dtype,
            _phantom: std::marker::PhantomData,
        }
    }

    /// Short alias for `push_prefix`.
    pub fn pp<S: ToString>(&self, s: S) -> Self {
        self.push_prefix(s)
    }

    /// The device used by default.
    pub fn device(&self) -> &Device {
        &self.data.device
    }

    /// The dtype used by default.
    pub fn dtype(&self) -> DType {
        self.dtype
    }

    /// Clone the VarBuilder tweaking its dtype
    pub fn to_dtype(&self, dtype: DType) -> Self {
        Self {
            data: self.data.clone(),
            path: self.path.clone(),
            dtype,
            _phantom: std::marker::PhantomData,
        }
    }

    fn path(&self, tensor_name: &str) -> String {
        if self.path.is_empty() {
            tensor_name.to_string()
        } else {
            [&self.path.join("."), tensor_name].join(".")
        }
    }

    /// This returns true only if a tensor with the passed in name is available. E.g. when passed
    /// `a`, true is returned if `prefix.a` exists but false is returned if only `prefix.a.b`
    /// exists.
    pub fn contains_tensor(&self, tensor_name: &str) -> bool {
        let path = self.path(tensor_name);
        self.data.backend.contains_tensor(&path)
    }

    /// Retrieve the tensor associated with the given name at the current path.
    pub fn get_with_hints<S: Into<Shape>>(
        &self,
        s: S,
        name: &str,
        hints: B::Hints,
    ) -> Result<Tensor> {
        self.get_with_hints_dtype(s, name, hints, self.data.dtype)
    }

    /// Retrieve the tensor associated with the given name at the current path.
    pub fn get<S: Into<Shape>>(&self, s: S, name: &str) -> Result<Tensor> {
        self.get_with_hints(s, name, Default::default())
    }

    /// Retrieve the tensor associated with the given name at the current path.
    pub fn get_unchecked(&self, name: &str) -> Result<Tensor> {
        self.get_unchecked_dtype(name, self.data.dtype)
    }

    /// Retrieve the tensor associated with the given name & dtype at the current path.
    pub fn get_unchecked_dtype(&self, name: &str, dtype: DType) -> Result<Tensor> {
        let name = self.path(name);
        self.data
            .backend
            .get_unchecked(&name, dtype, &self.data.device)
    }

    /// Retrieve the tensor associated with the given name & dtype at the current path.
    pub fn get_with_hints_dtype<S: Into<Shape>>(
        &self,
        s: S,
        name: &str,
        hints: B::Hints,
        dtype: DType,
    ) -> Result<Tensor> {
        let path = self.path(name);
        self.data
            .backend
            .get(s.into(), &path, hints, dtype, &self.data.device)
    }

    /// Set the device of the VarBuilder.
    pub fn set_device(self, device: Device) -> Self {
        Self {
            data: Arc::new(TensorData {
                backend: self.data.backend.clone(),
                dtype: self.data.dtype,
                device,
            }),
            ..self
        }
    }

    /// Set the dtype of the VarBuilder.
    pub fn set_dtype(self, dtype: DType) -> Self {
        Self {
            data: Arc::new(TensorData {
                backend: self.data.backend.clone(),
                dtype,
                device: self.data.device.clone(),
            }),
            dtype,
            ..self
        }
    }
}

struct Zeros;

impl SimpleBackend for Zeros {
    fn get(
        &self,
        s: Shape,
        _: &str,
        _: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        Tensor::zeros(s, dtype, dev)
    }

    fn get_unchecked(&self, _name: &str, _dtype: DType, _dev: &Device) -> Result<Tensor> {
        crate::bail!(
            "`Zeros` requires a shape for tensor retrieval, use `get` instead of `get_unchecked`"
        )
    }

    fn contains_tensor(&self, _name: &str) -> bool {
        true
    }
}

impl SimpleBackend for HashMap<String, Tensor> {
    fn get(
        &self,
        s: Shape,
        name: &str,
        _: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        let tensor = self.get_unchecked(name, dtype, dev)?;
        if tensor.shape() != &s {
            Err(crate::core::Error::UnexpectedShape {
                msg: format!("shape mismatch for {name}"),
                expected: s,
                got: tensor.shape().clone(),
            }
            .bt())?
        }
        Ok(tensor)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        let tensor = self
            .get(name)
            .ok_or_else(|| {
                Error::CannotFindTensor {
                    path: name.to_string(),
                }
                .bt()
            })?
            .clone();
        tensor.to_device(dev)?.to_dtype(dtype)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.contains_key(name)
    }
}

impl SimpleBackend for VarMap {
    fn get(
        &self,
        s: Shape,
        name: &str,
        h: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        VarMap::get(self, s, name, h, dtype, dev)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        VarMap::get_unchecked(self, name, dtype, dev)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.data().lock().unwrap().contains_key(name)
    }
}

#[allow(dead_code)]
pub struct SafeTensorWithRouting<'a> {
    routing: HashMap<String, usize>,
    safetensors: Vec<SafeTensors<'a>>,
}

impl SimpleBackend for SafeTensorWithRouting<'_> {
    fn get(
        &self,
        s: Shape,
        name: &str,
        _: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        let tensor = self.get_unchecked(name, dtype, dev)?;
        if tensor.shape() != &s {
            Err(crate::core::Error::UnexpectedShape {
                msg: format!("shape mismatch for {name}"),
                expected: s,
                got: tensor.shape().clone(),
            }
            .bt())?
        }
        Ok(tensor)
    }

    fn get_unchecked(&self, path: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        let index = self.routing.get(path).ok_or_else(|| {
            Error::CannotFindTensor {
                path: path.to_string(),
            }
            .bt()
        })?;
        let tensor = self.safetensors[*index]
            .tensor(path)?
            .load(dev)?
            .to_dtype(dtype)?;
        Ok(tensor)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.routing.contains_key(name)
    }
}

impl SimpleBackend for crate::core::npy::NpzTensors {
    fn get(
        &self,
        s: Shape,
        name: &str,
        _: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        let tensor = self.get_unchecked(name, dtype, dev)?;
        if tensor.shape() != &s {
            Err(crate::core::Error::UnexpectedShape {
                msg: format!("shape mismatch for {name}"),
                expected: s,
                got: tensor.shape().clone(),
            }
            .bt())?
        }
        Ok(tensor)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        let tensor = match self.get(name)? {
            None => Err(Error::CannotFindTensor {
                path: name.to_string(),
            }
            .bt())?,
            Some(tensor) => tensor,
        };
        let tensor = tensor.to_device(dev)?.to_dtype(dtype)?;
        Ok(tensor)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.get(name).map_or(false, |v| v.is_some())
    }
}

impl SimpleBackend for crate::core::pickle::PthTensors {
    fn get(
        &self,
        s: Shape,
        name: &str,
        _: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        let tensor = self.get_unchecked(name, dtype, dev)?;
        if tensor.shape() != &s {
            Err(crate::core::Error::UnexpectedShape {
                msg: format!("shape mismatch for {name}"),
                expected: s,
                got: tensor.shape().clone(),
            }
            .bt())?
        }
        Ok(tensor)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        let tensor = match self.get(name)? {
            None => Err(Error::CannotFindTensor {
                path: name.to_string(),
            }
            .bt())?,
            Some(tensor) => tensor,
        };
        let tensor = tensor.to_device(dev)?.to_dtype(dtype)?;
        Ok(tensor)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.get(name).map_or(false, |v| v.is_some())
    }
}

impl SimpleBackend for crate::core::safetensors::MmapedSafetensors {
    fn get(
        &self,
        s: Shape,
        name: &str,
        _: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        let tensor = self.get_unchecked(name, dtype, dev)?;
        if tensor.shape() != &s {
            Err(crate::core::Error::UnexpectedShape {
                msg: format!("shape mismatch for {name}"),
                expected: s,
                got: tensor.shape().clone(),
            }
            .bt())?
        }
        Ok(tensor)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        self.load(name, dev)?.to_dtype(dtype)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.get(name).is_ok()
    }
}

impl SimpleBackend for crate::core::safetensors::BufferedSafetensors {
    fn get(
        &self,
        s: Shape,
        name: &str,
        _: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        let tensor = self.get_unchecked(name, dtype, dev)?;
        if tensor.shape() != &s {
            Err(crate::core::Error::UnexpectedShape {
                msg: format!("shape mismatch for {name}"),
                expected: s,
                got: tensor.shape().clone(),
            }
            .bt())?
        }
        Ok(tensor)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        self.load(name, dev)?.to_dtype(dtype)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.get(name).is_ok()
    }
}

impl SimpleBackend for crate::core::safetensors::SliceSafetensors<'_> {
    fn get(
        &self,
        s: Shape,
        name: &str,
        _: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        let tensor = self.get_unchecked(name, dtype, dev)?;
        if tensor.shape() != &s {
            Err(crate::core::Error::UnexpectedShape {
                msg: format!("shape mismatch for {name}"),
                expected: s,
                got: tensor.shape().clone(),
            }
            .bt())?
        }
        Ok(tensor)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        self.load(name, dev)?.to_dtype(dtype)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.get(name).is_ok()
    }
}

impl<'a> VarBuilder<'a> {
    /// Initializes a `VarBuilder` using a custom backend.
    ///
    /// It is preferred to use one of the more specific constructors. This
    /// constructor is provided to allow downstream users to define their own
    /// backends.
    pub fn from_backend(
        backend: Box<dyn SimpleBackend + 'a>,
        dtype: DType,
        device: Device,
    ) -> Self {
        let data = TensorData {
            backend: Arc::new(backend),
            dtype,
            device,
        };
        Self {
            data: Arc::new(data),
            path: vec![],
            dtype,
            _phantom: std::marker::PhantomData,
        }
    }

    /// Initializes a `VarBuilder` that uses zeros for any tensor.
    pub fn zeros(dtype: DType, dev: &Device) -> Self {
        Self::from_backend(Box::new(Zeros), dtype, dev.clone())
    }

    /// Initializes a `VarBuilder` that retrieves tensors stored in a hashtable. An error is
    /// returned if no tensor is available under the requested path or on shape mismatches.
    pub fn from_tensors(ts: HashMap<String, Tensor>, dtype: DType, dev: &Device) -> Self {
        Self::from_backend(Box::new(ts), dtype, dev.clone())
    }

    /// Initializes a `VarBuilder` using a `VarMap`. The requested tensors are created and
    /// initialized on new paths, the same tensor is used if the same path is requested multiple
    /// times. This is commonly used when initializing a model before training.
    ///
    /// Note that it is possible to load the tensor values after model creation using the `load`
    /// method on `varmap`, this can be used to start model training from an existing checkpoint.
    pub fn from_varmap(varmap: &VarMap, dtype: DType, dev: &Device) -> Self {
        Self::from_backend(Box::new(varmap.clone()), dtype, dev.clone())
    }

    /// Initializes a `VarBuilder` that retrieves tensors stored in a collection of safetensors
    /// files.
    ///
    /// # Safety
    ///
    /// The unsafe is inherited from [`memmap2::MmapOptions`].
    pub unsafe fn from_mmaped_safetensors<P: AsRef<std::path::Path>>(
        paths: &[P],
        dtype: DType,
        dev: &Device,
    ) -> Result<Self> {
        let tensors = crate::core::safetensors::MmapedSafetensors::multi(paths)?;
        Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone()))
    }

    /// Initializes a `VarBuilder` from a binary buffer in the safetensor format.
    pub fn from_buffered_safetensors(data: Vec<u8>, dtype: DType, dev: &Device) -> Result<Self> {
        let tensors = crate::core::safetensors::BufferedSafetensors::new(data)?;
        Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone()))
    }

    /// Initializes a `VarBuilder` from a binary slice in the safetensor format.
    pub fn from_slice_safetensors(data: &'a [u8], dtype: DType, dev: &Device) -> Result<Self> {
        let tensors = crate::core::safetensors::SliceSafetensors::new(data)?;
        Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone()))
    }

    /// Initializes a `VarBuilder` that retrieves tensors stored in a numpy npz file.
    pub fn from_npz<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> {
        let npz = crate::core::npy::NpzTensors::new(p)?;
        Ok(Self::from_backend(Box::new(npz), dtype, dev.clone()))
    }

    /// Initializes a `VarBuilder` that retrieves tensors stored in a pytorch pth file.
    pub fn from_pth<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> {
        let pth = crate::core::pickle::PthTensors::new(p, None)?;
        Ok(Self::from_backend(Box::new(pth), dtype, dev.clone()))
    }

    /// Gets a VarBuilder that applies some renaming function on tensor it gets queried for before
    /// passing the new names to the inner VarBuilder.
    ///
    /// ```rust
    /// use diffusion_rs_common::core::{Tensor, DType, Device};
    ///
    /// let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
    /// let tensors: std::collections::HashMap<_, _> = [
    ///     ("foo".to_string(), a),
    /// ]
    /// .into_iter()
    /// .collect();
    /// let vb = diffusion_rs_common::nn::VarBuilder::from_tensors(tensors, DType::F32, &Device::Cpu);
    /// assert!(vb.contains_tensor("foo"));
    /// assert!(vb.get((2, 3), "foo").is_ok());
    /// assert!(!vb.contains_tensor("bar"));
    /// let vb = vb.rename_f(|f: &str| if f == "bar" { "foo".to_string() } else { f.to_string() });
    /// assert!(vb.contains_tensor("bar"));
    /// assert!(vb.contains_tensor("foo"));
    /// assert!(vb.get((2, 3), "bar").is_ok());
    /// assert!(vb.get((2, 3), "foo").is_ok());
    /// assert!(!vb.contains_tensor("baz"));
    /// # Ok::<(), diffusion_rs_common::core::Error>(())
    /// ```
    pub fn rename_f<F: Fn(&str) -> String + Sync + Send + 'static>(self, f: F) -> Self {
        let f: Box<dyn Fn(&str) -> String + Sync + Send + 'static> = Box::new(f);
        self.rename(f)
    }

    pub fn rename<R: Renamer + Send + Sync + 'a>(self, renamer: R) -> Self {
        let dtype = self.dtype();
        let device = self.device().clone();
        let path = self.path.clone();
        let backend = Rename::new(self, renamer);
        let backend: Box<dyn SimpleBackend + 'a> = Box::new(backend);
        let data = TensorData {
            backend: Arc::new(backend),
            dtype,
            device,
        };
        Self {
            data: Arc::new(data),
            dtype,
            path,
            _phantom: std::marker::PhantomData,
        }
    }
}

pub struct ShardedSafeTensors(crate::core::safetensors::MmapedSafetensors);

pub type ShardedVarBuilder<'a> = VarBuilderArgs<'a, ShardedSafeTensors>;

impl ShardedSafeTensors {
    /// Initializes a `VarBuilder` that retrieves tensors stored in a collection of safetensors
    /// files and make them usable in a sharded way.
    ///
    /// # Safety
    ///
    /// The unsafe is inherited from [`memmap2::MmapOptions`].
    pub unsafe fn var_builder<P: AsRef<std::path::Path>>(
        paths: &[P],
        dtype: DType,
        dev: &Device,
    ) -> Result<ShardedVarBuilder<'static>> {
        let tensors = crate::core::safetensors::MmapedSafetensors::multi(paths)?;
        let backend = ShardedSafeTensors(tensors);
        Ok(VarBuilderArgs::new_with_args(backend, dtype, dev))
    }
}

#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub struct Shard {
    pub dim: usize,
    pub rank: usize,
    pub world_size: usize,
}

impl Default for Shard {
    fn default() -> Self {
        Self {
            dim: 0,
            rank: 0,
            world_size: 1,
        }
    }
}

/// Get part of a tensor, typically used to do Tensor Parallelism sharding.
///
/// If the tensor is of size (1024, 1024).
///
/// `dim` corresponds to the dimension to slice into
/// `rank` is the rank of the current process
/// `world_size` is the total number of ranks in the process group
///
/// `get_sharded("tensor", 0, 0, 2)` means `tensor.i((..512))`
/// `get_sharded("tensor", 0, 1, 2)` means `tensor.i((512..))`
/// `get_sharded("tensor", 1, 0, 2)` means `tensor.i((.., ..512))`
impl Backend for ShardedSafeTensors {
    type Hints = Shard;

    fn get(
        &self,
        target_shape: Shape, // The size is only checked when the world size is 1.
        path: &str,
        h: Self::Hints,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        if h.world_size == 1 {
            // There is no sharding to be applied here so we use the default backend to speed
            // things up.
            return SimpleBackend::get(&self.0, target_shape, path, Default::default(), dtype, dev);
        }

        let Shard {
            dim,
            rank,
            world_size,
        } = h;
        let view = self.0.get(path)?;
        let view_dtype = view.dtype();
        let mut shape = view.shape().to_vec();
        let size = shape[dim];

        if size % world_size != 0 {
            return Err(Error::ShapeMismatchSplit {
                shape: shape.into(),
                dim,
                n_parts: world_size,
            });
        }
        let block_size = size / world_size;
        let start = rank * block_size;
        let stop = (rank + 1) * block_size;

        // Everything is expressed in tensor dimension
        // bytes offsets is handled automatically for safetensors.

        let iterator = if dim == 0 {
            view.slice(start..stop).map_err(|_| {
                Error::Msg(format!(
                    "Cannot slice tensor {path} ({shape:?} along dim {dim} with {start}..{stop}"
                ))
            })?
        } else if dim == 1 {
            view.slice((.., start..stop)).map_err(|_| {
                Error::Msg(format!(
                    "Cannot slice tensor {path} ({shape:?} along dim {dim} with {start}..{stop}"
                ))
            })?
        } else {
            crate::bail!("Get sharded on dimensions != 0 or 1")
        };

        shape[dim] = block_size;

        let view_dtype: DType = view_dtype.try_into()?;
        let raw: Vec<u8> = iterator.into_iter().flatten().cloned().collect();
        Tensor::from_raw_buffer(&raw, view_dtype, &shape, dev)?.to_dtype(dtype)
    }

    fn get_unchecked(&self, _name: &str, _dtype: DType, _dev: &Device) -> Result<Tensor> {
        crate::bail!("`get_unchecked` does not make sense for `ShardedSafeTensors`, use `get`.");
    }

    fn contains_tensor(&self, name: &str) -> bool {
        self.0.get(name).is_ok()
    }
}

/// This traits specifies a way to rename the queried names into names that are stored in an inner
/// VarBuilder.
pub trait Renamer {
    /// This is applied to the name obtained by a name call and the resulting name is passed to the
    /// inner VarBuilder.
    fn rename(&self, v: &str) -> std::borrow::Cow<'_, str>;
}

pub struct Rename<'a, R: Renamer> {
    inner: VarBuilder<'a>,
    renamer: R,
}

impl<R: Renamer + Sync + Send> SimpleBackend for Rename<'_, R> {
    fn get(
        &self,
        s: Shape,
        name: &str,
        h: crate::nn::Init,
        dtype: DType,
        dev: &Device,
    ) -> Result<Tensor> {
        let name = self.renamer.rename(name);
        self.inner
            .get_with_hints_dtype(s, &name, h, dtype)?
            .to_device(dev)
    }

    fn get_unchecked(&self, name: &str, dtype: DType, dev: &Device) -> Result<Tensor> {
        let name = self.renamer.rename(name);
        self.inner.get_unchecked_dtype(&name, dtype)?.to_device(dev)
    }

    fn contains_tensor(&self, name: &str) -> bool {
        let name = self.renamer.rename(name);
        self.inner.contains_tensor(&name)
    }
}

impl<'a, R: Renamer> Rename<'a, R> {
    pub fn new(inner: VarBuilder<'a>, renamer: R) -> Self {
        Self { inner, renamer }
    }
}

impl Renamer for Box<dyn Fn(&str) -> String + Sync + Send> {
    fn rename(&self, v: &str) -> std::borrow::Cow<'_, str> {
        std::borrow::Cow::Owned(self(v))
    }
}