DeepSeek V3: deepseek-ai/DeepSeek-V3, deepseek-ai/DeepSeek-R1
The DeepSeek V3 is a mixture of expert (MoE) model.
mistralrs run --isq 4 -m deepseek-ai/DeepSeek-R1
Note
The non-distill versions of the DeepSeek R1 models share the DeepSeek V3 architecture.
Note
This model supports MoQE which can be activated in the ISQ organization parameter within the various APIs, as demonstrated below:
mistralrs run --isq 4 -m deepseek-ai/DeepSeek-R1 --isq-organization moqe
Running the distill models
The various distillation models can be run out of the box.
mistralrs run --isq 4 -m deepseek-ai/DeepSeek-R1-Distill-Llama-8B
mistralrs run --isq 4 -m deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
mistralrs run --isq 4 -m deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
HTTP API
mistralrs serve --isq 4 -p 1234 -m deepseek-ai/DeepSeek-R1
import openai
messages = []
prompt = input("Enter system prompt >>> ")
if len(prompt) > 0:
messages.append({"role": "system", "content": prompt})
while True:
prompt = input(">>> ")
messages.append({"role": "user", "content": prompt})
completion = client.chat.completions.create(
model="default",
messages=messages,
max_tokens=256,
frequency_penalty=1.0,
top_p=0.1,
temperature=0,
)
resp = completion.choices[0].message.content
print(resp)
messages.append({"role": "assistant", "content": resp})
Python SDK
from mistralrs import Runner, Which, ChatCompletionRequest, Architecture
runner = Runner(
which=Which.Plain(
model_id="deepseek-ai/DeepSeek-R1",
arch=Architecture.DeepseekV3,
),
)
res = runner.send_chat_completion_request(
ChatCompletionRequest(
model="default",
messages=[
{"role": "user", "content": "Tell me a story about the Rust type system."}
],
max_tokens=256,
presence_penalty=1.0,
top_p=0.1,
temperature=0.1,
)
)
print(res.choices[0].message.content)
print(res.usage)
Rust SDK
You can find this example here.
use anyhow::Result;
use mistralrs::{
IsqType, PagedAttentionMetaBuilder, TextMessageRole, TextMessages, TextModelBuilder,
};
#[tokio::main]
async fn main() -> Result<()> {
let model = TextModelBuilder::new("deepseek-ai/DeepSeek-R1")
.with_isq(IsqType::Q4K)
.with_logging()
.with_paged_attn(|| PagedAttentionMetaBuilder::default().build())?
.build()
.await?;
let messages = TextMessages::new()
.add_message(
TextMessageRole::System,
"You are an AI agent with a specialty in programming.",
)
.add_message(
TextMessageRole::User,
"Hello! How are you? Please write generic binary search function in Rust.",
);
let response = model.send_chat_request(messages).await?;
println!("{}", response.choices[0].message.content.as_ref().unwrap());
dbg!(
response.usage.avg_prompt_tok_per_sec,
response.usage.avg_compl_tok_per_sec
);
Ok(())
}