GLM-4.7-Flash (MoE): zai-org/GLM-4.7-Flash
GLM-4.7-Flash is a mixture of experts (MoE) model from the GLM family with MLA (Multi-head Latent Attention) architecture.
HTTP API
Start the server:
mistralrs serve --isq 4 -p 1234 -m zai-org/GLM-4.7-Flash
Send requests using an OpenAI-compatible client:
import openai
client = openai.Client(base_url="http://localhost:1234/v1", api_key="foobar")
messages = []
prompt = input("Enter system prompt >>> ")
if len(prompt) > 0:
messages.append({"role": "system", "content": prompt})
while True:
prompt = input(">>> ")
messages.append({"role": "user", "content": prompt})
completion = client.chat.completions.create(
model="default",
messages=messages,
max_tokens=256,
frequency_penalty=1.0,
top_p=0.1,
temperature=0,
)
resp = completion.choices[0].message.content
print(resp)
messages.append({"role": "assistant", "content": resp})
Python SDK
from mistralrs import Runner, Which, ChatCompletionRequest, Architecture
runner = Runner(
which=Which.Plain(
model_id="zai-org/GLM-4.7-Flash",
arch=Architecture.GLM4MoeLite,
),
)
res = runner.send_chat_completion_request(
ChatCompletionRequest(
model="default",
messages=[
{"role": "user", "content": "Tell me a story about the Rust type system."}
],
max_tokens=256,
presence_penalty=1.0,
top_p=0.1,
temperature=0.1,
)
)
print(res.choices[0].message.content)
print(res.usage)
Rust SDK
You can find this example here.
use anyhow::Result;
use mistralrs::{IsqType, TextMessageRole, TextMessages, TextModelBuilder};
#[tokio::main]
async fn main() -> Result<()> {
let model = TextModelBuilder::new("zai-org/GLM-4.7-Flash")
.with_isq(IsqType::Q4K)
.with_logging()
.build()
.await?;
let messages = TextMessages::new()
.add_message(
TextMessageRole::System,
"You are an AI agent with a specialty in programming.",
)
.add_message(
TextMessageRole::User,
"Hello! How are you? Please write generic binary search function in Rust.",
);
let response = model.send_chat_request(messages).await?;
println!("{}", response.choices[0].message.content.as_ref().unwrap());
dbg!(
response.usage.avg_prompt_tok_per_sec,
response.usage.avg_compl_tok_per_sec
);
Ok(())
}