Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

mistralrs Python SDK

Documentation for the mistralrs Python package.

Installation: See PYTHON_INSTALLATION.md for installation instructions.

Table of contents

  • Full API reference: here
  • Model configuration (Which enum): here
  • Multi-model support: here
  • MCP Client Configuration: here
  • Example: here
  • Embeddings example: here

Which

Each *_model_id may be a HF hub repo or a local path. For quantized GGUF models, a list is accepted if multiple files must be specified.

Architecture for plain models

If you do not specify the architecture, an attempt will be made to use the model’s config. If this fails, please raise an issue.

  • Mistral
  • Gemma
  • Mixtral
  • Llama
  • Phi2
  • Phi3
  • Qwen2
  • Gemma2
  • GLM4
  • Starcoder2
  • Phi3_5MoE
  • DeepseekV2
  • DeepseekV3
  • Qwen3
  • Qwen3Moe
  • SmolLm3
  • GraniteMoeHybrid
  • GptOss

ISQ Organization

  • Default
  • MoQE: if applicable, only quantize MoE experts. https://arxiv.org/abs/2310.02410

Architecture for vision models

  • Phi3V
  • Idefics2
  • LLaVaNext
  • LLaVa
  • VLlama
  • Qwen2VL
  • Idefics3
  • MiniCpmO
  • Phi4MM
  • Qwen2_5VL
  • Gemma3
  • Mistral3
  • Llama4
  • Gemma3n
  • Qwen3VL

Architecture for diffusion models

  • Flux
  • FluxOffloaded

Architecture for speech models

  • Dia

Architecture for embedding models

  • EmbeddingGemma
  • Qwen3Embedding

ISQ Organization

  • Default
  • MoQE: if applicable, only quantize MoE experts. https://arxiv.org/abs/2310.02410

Note: from_uqff specified a UQFF path to load from. If provided, this takes precedence over applying ISQ. Specify multiple files using a semicolon delimiter (;).

Note: enable_thinking enables thinking for models that support the configuration. Note: truncate_sequence=True trims prompts that would otherwise exceed the model’s maximum context length. Leave it False to receive a validation error instead.

class Which(Enum):
    @dataclass
    class Plain:
        model_id: str
        arch: Architecture | None = None
        tokenizer_json: str | None = None
        topology: str | None = None
        organization: str | None = None
        from_uqff: str | list[str] | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)
        calibration_file: str | None = None
        imatrix: str | None = None
        hf_cache_path: str | None = None

    @dataclass
    class XLora:
        xlora_model_id: str
        order: str
        arch: Architecture | None = None
        model_id: str | None = None
        tokenizer_json: str | None = None
        tgt_non_granular_index: int | None = None
        topology: str | None = None
        from_uqff: str | list[str] | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)
        hf_cache_path: str | None = None

    @dataclass
    class Lora:
        adapter_model_id: str
        arch: Architecture | None = None
        model_id: str | None = None
        tokenizer_json: str | None = None
        topology: str | None = None
        from_uqff: str | list[str] | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)
        hf_cache_path: str | None = None

    @dataclass
    class GGUF:
        quantized_model_id: str
        quantized_filename: str | list[str]
        tok_model_id: str | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)

    @dataclass
    class XLoraGGUF:
        quantized_model_id: str
        quantized_filename: str | list[str]
        xlora_model_id: str
        order: str
        tok_model_id: str | None = None
        tgt_non_granular_index: int | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)

    @dataclass
    class LoraGGUF:
        quantized_model_id: str
        quantized_filename: str | list[str]
        adapters_model_id: str
        order: str
        tok_model_id: str | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)

    @dataclass
    class GGML:
        quantized_model_id: str
        quantized_filename: str
        tok_model_id: str | None = None
        tokenizer_json: str | None = None
        gqa: int | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)

    @dataclass
    class XLoraGGML:
        quantized_model_id: str
        quantized_filename: str
        xlora_model_id: str
        order: str
        tok_model_id: str | None = None
        tgt_non_granular_index: int | None = None
        tokenizer_json: str | None = None
        gqa: int | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)

    @dataclass
    class LoraGGML:
        quantized_model_id: str
        quantized_filename: str
        adapters_model_id: str
        order: str
        tok_model_id: str | None = None
        tokenizer_json: str | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto
        auto_map_params: TextAutoMapParams | None = (None,)

    @dataclass
    class Embedding:
        model_id: str
        arch: EmbeddingArchitecture | None = None
        tokenizer_json: str | None = None
        topology: str | None = None
        from_uqff: str | list[str] | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto
        hf_cache_path: str | None = None

    @dataclass
    class VisionPlain:
        model_id: str
        arch: VisionArchitecture
        tokenizer_json: str | None = None
        topology: str | None = None
        from_uqff: str | list[str] | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto
        max_edge: int | None = None
        auto_map_params: VisionAutoMapParams | None = (None,)
        calibration_file: str | None = None
        imatrix: str | None = None
        hf_cache_path: str | None = None

    @dataclass
    class DiffusionPlain:
        model_id: str
        arch: DiffusionArchitecture
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class Speech:
        model_id: str
        arch: DiffusionArchitecture
        dac_model_id: str | None = None
        dtype: ModelDType = ModelDType.Auto

Multi-model Support

The mistralrs Python SDK supports running multiple models using the Runner class with the model_id parameter. All request methods accept an optional model_id to target a specific model. When model_id is None or omitted, the default model is used. If aliases are configured (for example via the server config or Rust MultiModelBuilder), list_models() will return those aliases and you can pass them in requests; canonical pipeline names remain accepted.

Basic Usage with model_id

import mistralrs

# Create a Runner with a vision model (Gemma 3 4B)
runner = mistralrs.Runner(
    which=mistralrs.Which.VisionPlain(
        model_id="google/gemma-3-4b-it",
        arch=mistralrs.VisionArchitecture.Gemma3,
    ),
    in_situ_quant="Q4K",
)

# List available models (model IDs are registered IDs, aliases if configured)
models = runner.list_models()
print(f"Available models: {models}")  # ["google/gemma-3-4b-it"]

# Send request to specific model using model_id parameter
response = runner.send_chat_completion_request(
    mistralrs.ChatCompletionRequest(
        messages=[{"role": "user", "content": "Hello!"}],
        max_tokens=100
    ),
    model_id="google/gemma-3-4b-it"  # Target specific model
)

# Send request without model_id (uses default model)
response = runner.send_chat_completion_request(
    mistralrs.ChatCompletionRequest(
        messages=[{"role": "user", "content": "Hello!"}],
        max_tokens=100
    )
)

Multi-model Management

# List available models
models = runner.list_models()
print(f"Available models: {models}")

# Get/set default model
default_model = runner.get_default_model_id()
print(f"Default model: {default_model}")

# Change default model (model must be loaded)
runner.set_default_model_id("google/gemma-3-4b-it")

# List models with their status
models_with_status = runner.list_models_with_status()
for model_id, status in models_with_status:
    print(f"{model_id}: {status}")  # status is "loaded", "unloaded", or "reloading"

Model Unloading and Reloading

You can unload models to free memory and reload them on demand:

model_id = "google/gemma-3-4b-it"

# Check if model is loaded
is_loaded = runner.is_model_loaded(model_id)
print(f"Model loaded: {is_loaded}")

# List models with their status
models_with_status = runner.list_models_with_status()
for mid, status in models_with_status:
    print(f"{mid}: {status}")

# Unload a model to free memory (preserves configuration for reload)
runner.unload_model(model_id)

# Check status after unload
is_loaded = runner.is_model_loaded(model_id)
print(f"Model loaded after unload: {is_loaded}")  # False

# Manually reload a model
runner.reload_model(model_id)

# Auto-reload: sending a request to an unloaded model will reload it automatically
response = runner.send_chat_completion_request(
    mistralrs.ChatCompletionRequest(
        messages=[{"role": "user", "content": "Hello!"}]
    ),
    model_id=model_id  # Will auto-reload if unloaded
)

Request Methods with model_id

All request methods accept an optional model_id parameter:

# Chat completion
response = runner.send_chat_completion_request(request, model_id="model-id")

# Completion
response = runner.send_completion_request(request, model_id="model-id")

# Embeddings
embeddings = runner.send_embedding_request(request, model_id="model-id")

# Image generation
image = runner.generate_image(prompt, response_format, model_id="model-id")

# Audio generation
audio = runner.generate_audio(prompt, model_id="model-id")

# Tokenization
tokens = runner.tokenize_text(text, add_special_tokens=True, model_id="model-id")
text = runner.detokenize_text(tokens, skip_special_tokens=True, model_id="model-id")

When model_id is None or omitted, the default model is used.

Server Configuration

For server-based multi-model deployment, see the multi-model documentation.

MCP Client

The mistralrs Python SDK now supports Model Context Protocol (MCP) clients, enabling AI assistants to connect to and interact with external tools and resources through standardized server interfaces.

MCP Server Configuration

Configure MCP servers using McpServerConfigPy:

# HTTP-based MCP server with Bearer token authentication
http_server = mistralrs.McpServerConfigPy(
    id="web_search",
    name="Web Search MCP",
    source=mistralrs.McpServerSourcePy.Http(
        url="https://api.example.com/mcp",
        timeout_secs=30,
        headers={"X-API-Version": "v1"}  # Optional additional headers
    ),
    enabled=True,
    tool_prefix="web",  # Prefixes tool names to avoid conflicts
    resources=None,
    bearer_token="your-api-token"  # Automatically added as Authorization header
)

# Process-based MCP server for local tools
process_server = mistralrs.McpServerConfigPy(
    id="filesystem",
    name="Filesystem MCP",
    source=mistralrs.McpServerSourcePy.Process(
        command="mcp-server-filesystem",
        args=["--root", "/tmp"],
        work_dir=None,
        env={"MCP_LOG_LEVEL": "debug"}  # Optional environment variables
    ),
    enabled=True,
    tool_prefix="fs",
    resources=["file://**"],  # Resource patterns this client is interested in
    bearer_token=None  # Process servers typically don't need authentication
)

# WebSocket-based MCP server for real-time communication
websocket_server = mistralrs.McpServerConfigPy(
    id="realtime_data",
    name="Real-time Data MCP",
    source=mistralrs.McpServerSourcePy.WebSocket(
        url="wss://realtime.example.com/mcp",
        timeout_secs=60,
        headers=None
    ),
    enabled=True,
    tool_prefix="rt",
    resources=None,
    bearer_token="websocket-token"  # WebSocket Bearer token support
)

MCP Client Configuration

Configure the MCP client using McpClientConfigPy:

mcp_config = mistralrs.McpClientConfigPy(
    servers=[http_server, process_server, websocket_server],
    auto_register_tools=True,  # Automatically discover and register tools
    tool_timeout_secs=30,      # Timeout for individual tool calls
    max_concurrent_calls=5     # Maximum concurrent tool calls across all servers
)

Integration with Runner

Pass the MCP client configuration to the Runner:

runner = mistralrs.Runner(
    which=mistralrs.Which.GGUF(
        tok_model_id="mistralai/Mistral-7B-Instruct-v0.1",
        quantized_model_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
        quantized_filename="mistral-7b-instruct-v0.1.Q4_K_M.gguf",
    ),
    mcp_client_config=mcp_config  # MCP tools automatically registered
)

When auto_register_tools=True, the MCP client will:

  1. Connect to all enabled MCP servers
  2. Discover available tools from each server
  3. Register them for automatic tool calling with appropriate prefixes
  4. Make them available during model conversations

MCP Transport Types

  • HTTP Transport: Best for public APIs, RESTful services, servers behind load balancers. Supports SSE (Server-Sent Events) and standard HTTP semantics.

  • Process Transport: Best for local tools, development servers, sandboxed environments. Provides process isolation with no network overhead.

  • WebSocket Transport: Best for interactive applications, real-time data, low-latency requirements. Supports persistent connections and server-initiated notifications.

Authentication

  • Bearer Tokens: Automatically added as Authorization: Bearer <token> header for HTTP and WebSocket connections
  • Custom Headers: Additional headers can be specified for API keys, versioning, etc.
  • Process Servers: Typically don’t require authentication as they run locally

Example

from mistralrs import Runner, Which, ChatCompletionRequest

runner = Runner(
    which=Which.GGUF(
        tok_model_id="mistralai/Mistral-7B-Instruct-v0.1",
        quantized_model_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
        quantized_filename="mistral-7b-instruct-v0.1.Q4_K_M.gguf",
    )
)

res = runner.send_chat_completion_request(
    ChatCompletionRequest(
        model="default",
        messages=[{"role":"user", "content":"Tell me a story about the Rust type system."}],
        max_tokens=256,
        presence_penalty=1.0,
        top_p=0.1,
        temperature=0.1,
    )
)
print(res.choices[0].message.content)
print(res.usage)

Embeddings example

from mistralrs import EmbeddingArchitecture, EmbeddingRequest, Runner, Which

runner = Runner(
    which=Which.Embedding(
        model_id="google/embeddinggemma-300m",
        arch=EmbeddingArchitecture.EmbeddingGemma,
    )
)

embeddings = runner.send_embedding_request(
    EmbeddingRequest(
        input=[
            "task: query | text: superconductors",
            "task: query | text: graphene",
        ],
        truncate_sequence=True,
    )
)

print(len(embeddings), len(embeddings[0]))

# Swap the model_id and arch below to load Qwen/Qwen3-Embedding-0.6B instead:
# Runner(
#     which=Which.Embedding(
#         model_id="Qwen/Qwen3-Embedding-0.6B",
#         arch=EmbeddingArchitecture.Qwen3Embedding,
#     )
# )