mistralrs/
vision_model.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use mistralrs_core::*;
use std::{num::NonZeroUsize, path::PathBuf};

use crate::{best_device, Model};

/// Configure a vision model with the various parameters for loading, running, and other inference behaviors.
pub struct VisionModelBuilder {
    // Loading model
    pub(crate) model_id: String,
    pub(crate) token_source: TokenSource,
    pub(crate) hf_revision: Option<String>,
    pub(crate) write_uqff: Option<PathBuf>,
    pub(crate) from_uqff: Option<PathBuf>,
    pub(crate) calibration_file: Option<PathBuf>,
    pub(crate) chat_template: Option<String>,
    pub(crate) tokenizer_json: Option<String>,
    pub(crate) device_mapping: Option<DeviceMapMetadata>,
    pub(crate) max_edge: Option<u32>,

    // Model running
    pub(crate) use_flash_attn: bool,
    pub(crate) prompt_batchsize: Option<NonZeroUsize>,
    pub(crate) topology: Option<Topology>,
    pub(crate) loader_type: VisionLoaderType,
    pub(crate) dtype: ModelDType,
    pub(crate) force_cpu: bool,
    pub(crate) isq: Option<IsqType>,

    // Other things
    pub(crate) max_num_seqs: usize,
    pub(crate) with_logging: bool,
}

impl VisionModelBuilder {
    /// A few defaults are applied here:
    /// - Token source is from the cache (.cache/huggingface/token)
    /// - Maximum number of sequences running is 32
    pub fn new(model_id: impl ToString, loader_type: VisionLoaderType) -> Self {
        Self {
            model_id: model_id.to_string(),
            use_flash_attn: cfg!(feature = "flash-attn"),
            topology: None,
            write_uqff: None,
            from_uqff: None,
            prompt_batchsize: None,
            chat_template: None,
            tokenizer_json: None,
            max_edge: None,
            loader_type,
            dtype: ModelDType::Auto,
            force_cpu: false,
            token_source: TokenSource::CacheToken,
            hf_revision: None,
            isq: None,
            max_num_seqs: 32,
            with_logging: false,
            device_mapping: None,
            calibration_file: None,
        }
    }

    /// Set the prompt batchsize to use for inference.
    pub fn with_prompt_batchsize(mut self, prompt_batchsize: NonZeroUsize) -> Self {
        self.prompt_batchsize = Some(prompt_batchsize);
        self
    }

    /// Set the model topology for use during loading. If there is an overlap, the topology type is used over the ISQ type.
    pub fn with_topology(mut self, topology: Topology) -> Self {
        self.topology = Some(topology);
        self
    }

    /// Literal Jinja chat template OR Path (ending in `.json`) to one.
    pub fn with_chat_template(mut self, chat_template: impl ToString) -> Self {
        self.chat_template = Some(chat_template.to_string());
        self
    }

    /// Path to a discrete `tokenizer.json` file.
    pub fn with_tokenizer_json(mut self, tokenizer_json: impl ToString) -> Self {
        self.tokenizer_json = Some(tokenizer_json.to_string());
        self
    }

    /// Load the model in a certain dtype.
    pub fn with_dtype(mut self, dtype: ModelDType) -> Self {
        self.dtype = dtype;
        self
    }

    /// Force usage of the CPU device. Do not use PagedAttention with this.
    pub fn with_force_cpu(mut self) -> Self {
        self.force_cpu = true;
        self
    }

    /// Source of the Hugging Face token.
    pub fn with_token_source(mut self, token_source: TokenSource) -> Self {
        self.token_source = token_source;
        self
    }

    /// Set the revision to use for a Hugging Face remote model.
    pub fn with_hf_revision(mut self, revision: impl ToString) -> Self {
        self.hf_revision = Some(revision.to_string());
        self
    }

    /// Use ISQ of a certain type. If there is an overlap, the topology type is used over the ISQ type.
    pub fn with_isq(mut self, isq: IsqType) -> Self {
        self.isq = Some(isq);
        self
    }

    /// Utilise this calibration_file file during ISQ
    pub fn with_calibration_file(mut self, path: PathBuf) -> Self {
        self.calibration_file = Some(path);
        self
    }

    /// Set the maximum number of sequences which can be run at once.
    pub fn with_max_num_seqs(mut self, max_num_seqs: usize) -> Self {
        self.max_num_seqs = max_num_seqs;
        self
    }

    /// Enable logging.
    pub fn with_logging(mut self) -> Self {
        self.with_logging = true;
        self
    }

    /// Provide metadata to initialize the device mapper. Generally, it is more programmatic and easier to use
    /// the [`Topology`], see [`Self::with_topology`].
    pub fn with_device_mapping(mut self, device_mapping: DeviceMapMetadata) -> Self {
        self.device_mapping = Some(device_mapping);
        self
    }

    /// Path to read a UQFF file from.
    pub fn from_uqff(mut self, path: PathBuf) -> Self {
        self.from_uqff = Some(path);
        self
    }

    /// Automatically resize and pad images to this maximum edge length. Aspect ratio is preserved.
    /// This is only supported on the Qwen2-VL and Idefics 2 models. Others handle this internally.
    pub fn from_max_edge(mut self, max_edge: u32) -> Self {
        self.max_edge = Some(max_edge);
        self
    }

    /// Path to write a UQFF file to.
    ///
    /// The parent (part of the path excluding the filename) will determine where any other files
    /// generated are written to. These can be used to load UQFF models standalone, and may include:
    /// - `residual.safetensors`
    /// - `tokenizer.json`
    /// - `config.json`
    /// - And others
    pub fn write_uqff(mut self, path: PathBuf) -> Self {
        self.write_uqff = Some(path);
        self
    }

    pub async fn build(self) -> anyhow::Result<Model> {
        let config = VisionSpecificConfig {
            use_flash_attn: self.use_flash_attn,
            prompt_batchsize: self.prompt_batchsize,
            topology: self.topology,
            write_uqff: self.write_uqff,
            from_uqff: self.from_uqff,
            max_edge: self.max_edge,
            calibration_file: self.calibration_file,
        };

        if self.with_logging {
            initialize_logging();
        }

        let loader = VisionLoaderBuilder::new(
            config,
            self.chat_template,
            self.tokenizer_json,
            Some(self.model_id),
        )
        .build(self.loader_type);

        // Load, into a Pipeline
        let pipeline = loader.load_model_from_hf(
            self.hf_revision,
            self.token_source,
            &self.dtype,
            &best_device(self.force_cpu)?,
            !self.with_logging,
            self.device_mapping.unwrap_or(DeviceMapMetadata::dummy()),
            self.isq,
            None,
        )?;

        let scheduler_method = SchedulerConfig::DefaultScheduler {
            method: DefaultSchedulerMethod::Fixed(self.max_num_seqs.try_into()?),
        };

        let runner = MistralRsBuilder::new(pipeline, scheduler_method)
            .with_no_kv_cache(false)
            .with_gemm_full_precision_f16(true)
            .with_no_prefix_cache(false);

        Ok(Model::new(runner.build()))
    }
}