mistralrs_core/diffusion_models/clip/
text.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]

use candle_core::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn as nn;
use candle_nn::Module;
use serde::Deserialize;

#[derive(Debug, Clone, Copy, Deserialize)]
pub enum Activation {
    #[serde(rename = "quick_gelu")]
    QuickGelu,
}

impl Module for Activation {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        match self {
            Activation::QuickGelu => xs * nn::ops::sigmoid(&(xs * 1.702f64)?)?,
        }
    }
}

#[derive(Debug, Clone, Deserialize)]
pub struct ClipTextConfig {
    pub vocab_size: usize,
    pub projection_dim: usize,
    pub hidden_act: Activation,
    pub intermediate_size: usize,
    pub max_position_embeddings: usize,
    pub num_hidden_layers: usize,
    pub num_attention_heads: usize,
}

#[derive(Debug, Clone, Deserialize)]
pub struct ClipConfig {
    pub text_config: ClipTextConfig,
}

// ClipTextEmbeddings mostly based on the existing implementation in the stable diffision model.
// TODO rewrite to be more similar to https://github.com/huggingface/transformers/blob/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip/modeling_clip.py#L142
#[derive(Clone, Debug)]
struct ClipTextEmbeddings {
    token_embedding: candle_nn::Embedding,
    position_embedding: candle_nn::Embedding,
    position_ids: Tensor,
}

impl ClipTextEmbeddings {
    fn new(vs: candle_nn::VarBuilder, c: &ClipTextConfig) -> Result<Self> {
        let token_embedding =
            candle_nn::embedding(c.vocab_size, c.projection_dim, vs.pp("token_embedding"))?;
        let position_embedding: nn::Embedding = candle_nn::embedding(
            c.max_position_embeddings,
            c.projection_dim,
            vs.pp("position_embedding"),
        )?;
        let position_ids =
            Tensor::arange(0u32, c.max_position_embeddings as u32, vs.device())?.unsqueeze(0)?;
        Ok(ClipTextEmbeddings {
            token_embedding,
            position_embedding,
            position_ids,
        })
    }
}

impl Module for ClipTextEmbeddings {
    fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
        let seq_length = input_ids.dim(D::Minus1)?;
        let inputs_embeds = self.token_embedding.forward(input_ids)?;
        let position_ids = self.position_ids.narrow(1, 0, seq_length)?;
        let position_embedding = self.position_embedding.forward(&position_ids)?;
        inputs_embeds.broadcast_add(&position_embedding)
    }
}

#[derive(Clone, Debug)]
struct ClipAttention {
    k_proj: candle_nn::Linear,
    v_proj: candle_nn::Linear,
    q_proj: candle_nn::Linear,
    out_proj: candle_nn::Linear,
    head_dim: usize,
    scale: f64,
    num_attention_heads: usize,
}

impl ClipAttention {
    fn new(vs: candle_nn::VarBuilder, c: &ClipTextConfig) -> Result<Self> {
        let projection_dim = c.projection_dim;
        let num_attention_heads = c.num_attention_heads;
        let k_proj = candle_nn::linear(projection_dim, projection_dim, vs.pp("k_proj"))?;
        let v_proj = candle_nn::linear(projection_dim, projection_dim, vs.pp("v_proj"))?;
        let q_proj = candle_nn::linear(projection_dim, projection_dim, vs.pp("q_proj"))?;
        let out_proj = candle_nn::linear(projection_dim, projection_dim, vs.pp("out_proj"))?;
        let head_dim = projection_dim / num_attention_heads;
        let scale = (head_dim as f64).powf(-0.5);

        Ok(ClipAttention {
            k_proj,
            v_proj,
            q_proj,
            out_proj,
            head_dim,
            scale,
            num_attention_heads,
        })
    }

    fn shape(&self, xs: &Tensor, seq_len: usize, bsz: usize) -> Result<Tensor> {
        xs.reshape((bsz, seq_len, self.num_attention_heads, self.head_dim))?
            .transpose(1, 2)?
            .contiguous()
    }

    fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
        let in_dtype = xs.dtype();
        let (bsz, seq_len, projection_dim) = xs.dims3()?;

        let query_states = (self.q_proj.forward(xs)? * self.scale)?;
        let proj_shape = (bsz * self.num_attention_heads, seq_len, self.head_dim);
        let query_states = self
            .shape(&query_states, seq_len, bsz)?
            .reshape(proj_shape)?
            .to_dtype(DType::F32)?;
        let key_states = self
            .shape(&self.k_proj.forward(xs)?, seq_len, bsz)?
            .reshape(proj_shape)?
            .to_dtype(DType::F32)?;
        let value_states = self
            .shape(&self.v_proj.forward(xs)?, seq_len, bsz)?
            .reshape(proj_shape)?
            .to_dtype(DType::F32)?;
        let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;

        let src_len = key_states.dim(1)?;

        let attn_weights = if let Some(causal_attention_mask) = causal_attention_mask {
            attn_weights
                .reshape((bsz, self.num_attention_heads, seq_len, src_len))?
                .broadcast_add(causal_attention_mask)?
                .reshape((bsz * self.num_attention_heads, seq_len, src_len))?
        } else {
            attn_weights
        };

        let attn_weights = candle_nn::ops::softmax(&attn_weights, D::Minus1)?;

        let attn_output = attn_weights.matmul(&value_states)?.to_dtype(in_dtype)?;
        let attn_output = attn_output
            .reshape((bsz, self.num_attention_heads, seq_len, self.head_dim))?
            .transpose(1, 2)?
            .reshape((bsz, seq_len, projection_dim))?;
        self.out_proj.forward(&attn_output)
    }
}

#[derive(Clone, Debug)]
struct ClipMlp {
    fc1: candle_nn::Linear,
    fc2: candle_nn::Linear,
    activation: Activation,
}

impl ClipMlp {
    fn new(vs: candle_nn::VarBuilder, c: &ClipTextConfig) -> Result<Self> {
        let fc1 = candle_nn::linear(c.projection_dim, c.intermediate_size, vs.pp("fc1"))?;
        let fc2 = candle_nn::linear(c.intermediate_size, c.projection_dim, vs.pp("fc2"))?;

        Ok(ClipMlp {
            fc1,
            fc2,
            activation: c.hidden_act,
        })
    }
}

impl ClipMlp {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let xs = self.fc1.forward(xs)?;
        self.fc2.forward(&self.activation.forward(&xs)?)
    }
}

#[derive(Clone, Debug)]
struct ClipEncoderLayer {
    self_attn: ClipAttention,
    layer_norm1: candle_nn::LayerNorm,
    mlp: ClipMlp,
    layer_norm2: candle_nn::LayerNorm,
}

impl ClipEncoderLayer {
    fn new(vs: candle_nn::VarBuilder, c: &ClipTextConfig) -> Result<Self> {
        let self_attn = ClipAttention::new(vs.pp("self_attn"), c)?;
        let layer_norm1 = candle_nn::layer_norm(c.projection_dim, 1e-5, vs.pp("layer_norm1"))?;
        let mlp = ClipMlp::new(vs.pp("mlp"), c)?;
        let layer_norm2 = candle_nn::layer_norm(c.projection_dim, 1e-5, vs.pp("layer_norm2"))?;

        Ok(ClipEncoderLayer {
            self_attn,
            layer_norm1,
            mlp,
            layer_norm2,
        })
    }

    fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
        let residual = xs;
        let xs = self.layer_norm1.forward(xs)?;
        let xs = self.self_attn.forward(&xs, causal_attention_mask)?;
        let xs = (xs + residual)?;

        let residual = &xs;
        let xs = self.layer_norm2.forward(&xs)?;
        let xs = self.mlp.forward(&xs)?;
        xs + residual
    }
}

#[derive(Clone, Debug)]
pub struct ClipEncoder {
    layers: Vec<ClipEncoderLayer>,
}

impl ClipEncoder {
    pub fn new(vs: candle_nn::VarBuilder, c: &ClipTextConfig) -> Result<Self> {
        let vs = vs.pp("layers");
        let mut layers: Vec<ClipEncoderLayer> = Vec::new();
        for index in 0..c.num_hidden_layers {
            let layer = ClipEncoderLayer::new(vs.pp(index.to_string()), c)?;
            layers.push(layer)
        }
        Ok(ClipEncoder { layers })
    }

    pub fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
        let mut xs = xs.clone();
        for layer in self.layers.iter() {
            xs = layer.forward(&xs, causal_attention_mask)?;
        }
        Ok(xs)
    }
}

/// A CLIP transformer based model.
#[derive(Clone, Debug)]
pub struct ClipTextTransformer {
    embeddings: ClipTextEmbeddings,
    encoder: ClipEncoder,
    final_layer_norm: candle_nn::LayerNorm,
}

impl ClipTextTransformer {
    pub fn new(vs: candle_nn::VarBuilder, c: &ClipTextConfig) -> Result<Self> {
        let embeddings = ClipTextEmbeddings::new(vs.pp("embeddings"), c)?;
        let encoder = ClipEncoder::new(vs.pp("encoder"), c)?;
        let final_layer_norm =
            candle_nn::layer_norm(c.projection_dim, 1e-5, vs.pp("final_layer_norm"))?;
        Ok(ClipTextTransformer {
            embeddings,
            encoder,
            final_layer_norm,
        })
    }

    // TODO: rewrrite to newer version
    fn build_causal_attention_mask(
        bsz: usize,
        seq_len: usize,
        mask_after: usize,
        device: &Device,
    ) -> Result<Tensor> {
        let mask: Vec<_> = (0..seq_len)
            .flat_map(|i| {
                (0..seq_len).map(move |j| {
                    if j > i || j > mask_after {
                        f32::MIN
                    } else {
                        0.
                    }
                })
            })
            .collect();
        let mask = Tensor::from_slice(&mask, (seq_len, seq_len), device)?;
        mask.broadcast_as((bsz, 1, seq_len, seq_len))
    }

    pub fn forward_with_mask(&self, input_ids: &Tensor, mask_after: usize) -> Result<Tensor> {
        let (bsz, seq_len) = input_ids.dims2()?;
        let input_ids = self.embeddings.forward(input_ids)?;
        let causal_attention_mask =
            Self::build_causal_attention_mask(bsz, seq_len, mask_after, input_ids.device())?;
        let input_ids = self
            .encoder
            .forward(&input_ids, Some(&causal_attention_mask))?;
        self.final_layer_norm.forward(&input_ids)
    }
}

impl Module for ClipTextTransformer {
    fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
        let output = self.forward_with_mask(input_ids, usize::MAX)?;
        let sequence_max_indices = input_ids.argmax(D::Minus1)?.to_dtype(DType::I64)?;

        let mut indices = Vec::new();
        for (batch_idx, &seq_idx) in sequence_max_indices.to_vec1::<i64>()?.iter().enumerate() {
            let index = output.i((batch_idx, seq_idx as usize))?.unsqueeze(0)?;
            indices.push(index);
        }
        Tensor::cat(&indices, 0)
    }
}