mistralrs_core/diffusion_models/t5/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]

// T5 Text Model
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py

use candle_core::{DType, Device, Module, Result, Tensor, D};
use candle_nn::{embedding, linear_no_bias, Activation, Embedding, Linear, VarBuilder};
use float8::F8E4M3;
use serde::Deserialize;
use std::sync::Arc;

fn default_relative_attention_max_distance() -> usize {
    128
}

fn default_is_decoder() -> bool {
    false
}

fn default_use_cache() -> bool {
    true
}

fn default_tie_word_embeddings() -> bool {
    true
}

fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
    let mask: Vec<_> = (0..size)
        .flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
        .collect();
    Tensor::from_slice(&mask, (size, size), device)
}

fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
    let shape = mask.shape();
    let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
    let m = mask.where_cond(&on_true, on_false)?;
    Ok(m)
}

#[derive(Debug, Deserialize, Default, Clone, PartialEq)]
pub struct ActivationWithOptionalGating {
    pub gated: bool,
    pub activation: candle_nn::Activation,
}

pub fn deserialize_feed_forward_proj_activation<'de, D>(
    deserializer: D,
) -> std::result::Result<ActivationWithOptionalGating, D::Error>
where
    D: serde::de::Deserializer<'de>,
{
    match String::deserialize(deserializer)?.as_str() {
        "gated-gelu" => Ok(ActivationWithOptionalGating {
            gated: true,
            activation: candle_nn::Activation::NewGelu,
        }),
        "gated-silu" => Ok(ActivationWithOptionalGating {
            gated: true,
            activation: candle_nn::Activation::Silu,
        }),
        buf => {
            let activation = serde_plain::from_str(buf).map_err(serde::de::Error::custom)?;
            Ok(ActivationWithOptionalGating {
                gated: false,
                activation,
            })
        }
    }
}

#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct Config {
    pub vocab_size: usize,
    pub d_model: usize,
    pub d_kv: usize,
    pub d_ff: usize,
    pub num_layers: usize,
    pub num_decoder_layers: Option<usize>,
    pub num_heads: usize,
    pub relative_attention_num_buckets: usize,
    #[serde(default = "default_relative_attention_max_distance")]
    pub relative_attention_max_distance: usize,
    pub dropout_rate: f64,
    pub layer_norm_epsilon: f64,
    pub initializer_factor: f64,
    #[serde(default, deserialize_with = "deserialize_feed_forward_proj_activation")]
    pub feed_forward_proj: ActivationWithOptionalGating,
    #[serde(default = "default_tie_word_embeddings")]
    pub tie_word_embeddings: bool,
    #[serde(default = "default_is_decoder")]
    pub is_decoder: bool,
    pub is_encoder_decoder: bool,
    #[serde(default = "default_use_cache")]
    pub use_cache: bool,
    pub pad_token_id: usize,
    pub eos_token_id: usize,
    pub decoder_start_token_id: Option<usize>,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            vocab_size: 32128,
            d_model: 512,
            d_kv: 64,
            d_ff: 2048,
            num_layers: 6,
            num_decoder_layers: None,
            num_heads: 8,
            relative_attention_num_buckets: 32,
            relative_attention_max_distance: 128,
            dropout_rate: 0.1,
            layer_norm_epsilon: 1e-6,
            initializer_factor: 1.0,
            feed_forward_proj: ActivationWithOptionalGating {
                gated: false,
                activation: Activation::Relu,
            },
            tie_word_embeddings: true,
            is_decoder: false,
            is_encoder_decoder: true,
            use_cache: true,
            pad_token_id: 0,
            eos_token_id: 1,
            decoder_start_token_id: Some(0),
        }
    }
}

#[derive(Debug, Clone)]
struct T5LayerNorm {
    weight: Tensor,
    variance_epsilon: f64,
}

impl T5LayerNorm {
    fn load(h: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
        let weight = vb.get(h, "weight")?;
        Ok(Self {
            weight,
            variance_epsilon: eps,
        })
    }
}

impl Module for T5LayerNorm {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let dtype = xs.dtype();
        let xs_f32 = xs.to_dtype(DType::F32)?;
        // variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        let variance = xs_f32.sqr()?.mean_keepdim(D::Minus1)?;
        let xs = xs_f32.broadcast_div(&(variance + self.variance_epsilon)?.sqrt()?)?;
        let xs = xs.to_dtype(dtype)?;
        let xs = xs.broadcast_mul(&self.weight)?;
        Ok(xs)
    }
}

#[derive(Debug, Clone)]
struct T5DenseActDense {
    wi: Linear,
    wo: Linear,
    act: Activation,
}

impl T5DenseActDense {
    fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let wi = linear_no_bias(cfg.d_model, cfg.d_ff, vb.pp("wi"))?;
        let wo = linear_no_bias(cfg.d_ff, cfg.d_model, vb.pp("wo"))?;
        Ok(Self {
            wi,
            wo,
            act: Activation::Relu,
        })
    }
}

impl Module for T5DenseActDense {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let xs = self.wi.forward(xs)?;
        let xs = self.act.forward(&xs)?;
        let xs = self.wo.forward(&xs)?;
        Ok(xs)
    }
}

#[derive(Debug, Clone)]
struct T5DenseGatedActDense {
    wi_0: Linear,
    wi_1: Linear,
    wo: Linear,
    act: Activation,
}

impl T5DenseGatedActDense {
    fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let wi_0 = linear_no_bias(cfg.d_model, cfg.d_ff, vb.pp("wi_0"))?;
        let wi_1 = linear_no_bias(cfg.d_model, cfg.d_ff, vb.pp("wi_1"))?;
        let wo = linear_no_bias(cfg.d_ff, cfg.d_model, vb.pp("wo"))?;
        Ok(Self {
            wi_0,
            wi_1,
            wo,
            act: cfg.feed_forward_proj.activation,
        })
    }
}

impl Module for T5DenseGatedActDense {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let hidden_gelu = self.act.forward(&self.wi_0.forward(xs)?)?;
        let hidden_linear = self.wi_1.forward(xs)?;
        let xs = hidden_gelu.broadcast_mul(&hidden_linear)?;
        let xs = self.wo.forward(&xs)?;
        Ok(xs)
    }
}

#[derive(Debug, Clone)]
struct T5LayerFF {
    dense_act: Option<T5DenseActDense>,
    gated_dense_act: Option<T5DenseGatedActDense>,
    layer_norm: T5LayerNorm,
}

impl T5LayerFF {
    fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let layer_norm =
            T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
        let (dense_act, gated_dense_act) = if cfg.feed_forward_proj.gated {
            (
                None,
                Some(T5DenseGatedActDense::load(vb.pp("DenseReluDense"), cfg)?),
            )
        } else {
            (
                Some(T5DenseActDense::load(vb.pp("DenseReluDense"), cfg)?),
                None,
            )
        };
        Ok(Self {
            dense_act,
            gated_dense_act,
            layer_norm,
        })
    }

    fn cast_to(&mut self, device: &Device) -> Result<()> {
        self.layer_norm = T5LayerNorm {
            weight: self.layer_norm.weight.to_device(device)?,
            variance_epsilon: self.layer_norm.variance_epsilon,
        };
        if let Some(dense) = &mut self.dense_act {
            dense.wi = Linear::new(
                dense.wi.weight().to_device(device)?,
                dense.wi.bias().map(|x| x.to_device(device).unwrap()),
            );
            dense.wo = Linear::new(
                dense.wo.weight().to_device(device)?,
                dense.wo.bias().map(|x| x.to_device(device).unwrap()),
            );
        }
        if let Some(dense) = &mut self.gated_dense_act {
            dense.wi_0 = Linear::new(
                dense.wi_0.weight().to_device(device)?,
                dense.wi_0.bias().map(|x| x.to_device(device).unwrap()),
            );
            dense.wi_1 = Linear::new(
                dense.wi_1.weight().to_device(device)?,
                dense.wi_1.bias().map(|x| x.to_device(device).unwrap()),
            );
            dense.wo = Linear::new(
                dense.wo.weight().to_device(device)?,
                dense.wo.bias().map(|x| x.to_device(device).unwrap()),
            );
        }
        Ok(())
    }
}

impl Module for T5LayerFF {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let ys = self.layer_norm.forward(xs)?;
        let ys = match &self.dense_act {
            Some(dense_act) => dense_act.forward(&ys)?,
            None => self.gated_dense_act.as_ref().unwrap().forward(&ys)?,
        };
        let xs = (xs + ys)?;
        Ok(xs)
    }
}

#[derive(Debug, Clone)]
struct T5Attention {
    q: Linear,
    k: Linear,
    v: Linear,
    o: Linear,
    n_heads: usize,
    d_kv: usize,
    relative_attention_bias: Option<Embedding>,
    relative_attention_num_buckets: usize,
    relative_attention_max_distance: usize,
    inner_dim: usize,
    use_cache: bool,
}

impl T5Attention {
    fn load(
        has_relative_attention_bias: bool,
        decoder: bool,
        vb: VarBuilder,
        cfg: &Config,
    ) -> Result<Self> {
        let inner_dim = cfg.num_heads * cfg.d_kv;
        let q = linear_no_bias(cfg.d_model, inner_dim, vb.pp("q"))?;
        let k = linear_no_bias(cfg.d_model, inner_dim, vb.pp("k"))?;
        let v = linear_no_bias(cfg.d_model, inner_dim, vb.pp("v"))?;
        let o = linear_no_bias(inner_dim, cfg.d_model, vb.pp("o"))?;
        let relative_attention_bias = if has_relative_attention_bias {
            let emb = embedding(
                cfg.relative_attention_num_buckets,
                cfg.num_heads,
                vb.pp("relative_attention_bias"),
            )?;
            Some(emb)
        } else {
            None
        };
        Ok(Self {
            q,
            k,
            v,
            o,
            n_heads: cfg.num_heads,
            d_kv: cfg.d_kv,
            relative_attention_bias,
            relative_attention_num_buckets: cfg.relative_attention_num_buckets,
            relative_attention_max_distance: cfg.relative_attention_max_distance,
            inner_dim,
            use_cache: cfg.use_cache && decoder,
        })
    }

    fn forward(
        &self,
        xs: &Tensor,
        position_bias: Option<&Tensor>,
        key_value_states: Option<&Tensor>,
        mask: Option<&Tensor>,
    ) -> Result<(Tensor, Option<Tensor>)> {
        // Performs Self-attention (if key_value_states is None) or attention
        // over source sentence (provided by key_value_states).
        let kv_input = match key_value_states {
            None => xs,
            Some(key_value_states) => key_value_states,
        };
        let (b_sz, q_len) = (xs.dim(0)?, xs.dim(1)?);
        let kv_len = kv_input.dim(1)?;
        let q = self.q.forward(xs)?;
        let k = self.k.forward(kv_input)?;
        let v = self.v.forward(kv_input)?;
        let q = q
            .reshape((b_sz, q_len, self.n_heads, self.d_kv))?
            .transpose(1, 2)?
            .contiguous()?;
        let k = k
            .reshape((b_sz, kv_len, self.n_heads, self.d_kv))?
            .transpose(1, 2)?;
        let v = v
            .reshape((b_sz, kv_len, self.n_heads, self.d_kv))?
            .transpose(1, 2)?;

        let k = k.contiguous()?;
        let v = v.contiguous()?;
        // TODO: Use flash_attn.
        let scores = { q.matmul(&k.t()?)? };
        let scores = match mask {
            None => scores,
            Some(mask) => masked_fill(
                &scores,
                &mask
                    .unsqueeze(0)?
                    .unsqueeze(0)?
                    .repeat((b_sz, self.n_heads))?,
                f32::NEG_INFINITY,
            )?,
        };

        let (scores, position_bias) = match position_bias {
            Some(position_bias) => (
                scores.broadcast_add(position_bias)?,
                Some(position_bias.clone()),
            ),
            None => match &self.relative_attention_bias {
                None => (scores, None),
                Some(relative_attention_bias) => {
                    // This only handles the bidirectional case.
                    let kv_len = k.dim(2)?;
                    let (q_start, q_end) = match self.use_cache {
                        true => ((kv_len - q_len) as u32, kv_len as u32),
                        false => (0_u32, kv_len as u32),
                    };
                    let num_buckets = self.relative_attention_num_buckets as u32 / 2;
                    let max_exact = num_buckets / 2;
                    let relative_position = (q_start..q_end)
                        .map(|i| {
                            (0..kv_len as u32)
                                .map(|j| {
                                    if i < j {
                                        if j - i < max_exact {
                                            j - i + num_buckets
                                        } else {
                                            let b = f32::log(
                                                (j - i) as f32 / max_exact as f32,
                                                self.relative_attention_max_distance as f32
                                                    / max_exact as f32,
                                            ) * (num_buckets - max_exact) as f32;
                                            u32::min(
                                                max_exact + num_buckets + b as u32,
                                                self.relative_attention_num_buckets as u32 - 1,
                                            )
                                        }
                                    } else if i - j < max_exact {
                                        i - j
                                    } else {
                                        let b = f32::log(
                                            (i - j) as f32 / max_exact as f32,
                                            self.relative_attention_max_distance as f32
                                                / max_exact as f32,
                                        ) * (num_buckets - max_exact) as f32;
                                        u32::min(max_exact + b as u32, num_buckets - 1)
                                    }
                                })
                                .collect::<Vec<u32>>()
                        })
                        .collect::<Vec<Vec<_>>>();
                    let relative_buckets = Tensor::new(relative_position, q.device())?;
                    let position_bias = relative_attention_bias
                        .forward(&relative_buckets)?
                        .permute((2, 0, 1))?
                        .unsqueeze(0)?;
                    (scores.broadcast_add(&position_bias)?, Some(position_bias))
                    // TODO: position_bias_masked?
                }
            },
        };

        let attn_weights = { candle_nn::ops::softmax_last_dim(&scores)? };
        let attn_output = attn_weights.matmul(&v)?;
        let attn_output = attn_output
            .transpose(1, 2)?
            .reshape((b_sz, q_len, self.inner_dim))?;
        let attn_output = self.o.forward(&attn_output)?;
        Ok((attn_output, position_bias))
    }
}

#[derive(Debug, Clone)]
struct T5LayerSelfAttention {
    self_attention: T5Attention,
    layer_norm: T5LayerNorm,
}

impl T5LayerSelfAttention {
    fn load(h: bool, d: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let self_attention = T5Attention::load(h, d, vb.pp("SelfAttention"), cfg)?;
        let layer_norm =
            T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
        Ok(Self {
            self_attention,
            layer_norm,
        })
    }

    fn forward(
        &self,
        xs: &Tensor,
        position_bias: Option<&Tensor>,
        mask: Option<&Tensor>,
    ) -> Result<(Tensor, Option<Tensor>)> {
        let normed_xs = self.layer_norm.forward(xs)?;
        let (ys, position_bias) =
            self.self_attention
                .forward(&normed_xs, position_bias, None, mask)?;
        let ys = (xs + ys)?;
        Ok((ys, position_bias))
    }

    fn cast_to(&mut self, device: &Device) -> Result<()> {
        self.self_attention.q = Linear::new(
            self.self_attention.q.weight().to_device(device)?,
            self.self_attention
                .q
                .bias()
                .map(|x| x.to_device(device).unwrap()),
        );
        self.self_attention.k = Linear::new(
            self.self_attention.k.weight().to_device(device)?,
            self.self_attention
                .k
                .bias()
                .map(|x| x.to_device(device).unwrap()),
        );
        self.self_attention.v = Linear::new(
            self.self_attention.v.weight().to_device(device)?,
            self.self_attention
                .v
                .bias()
                .map(|x| x.to_device(device).unwrap()),
        );
        self.self_attention.o = Linear::new(
            self.self_attention.o.weight().to_device(device)?,
            self.self_attention
                .o
                .bias()
                .map(|x| x.to_device(device).unwrap()),
        );
        if let Some(embed) = &mut self.self_attention.relative_attention_bias {
            *embed = Embedding::new(embed.embeddings().to_device(device)?, embed.hidden_size());
        }
        self.layer_norm = T5LayerNorm {
            weight: self.layer_norm.weight.to_device(device)?,
            variance_epsilon: self.layer_norm.variance_epsilon,
        };
        Ok(())
    }
}

#[derive(Debug, Clone)]
struct T5LayerCrossAttention {
    cross_attention: T5Attention,
    layer_norm: T5LayerNorm,
}

impl T5LayerCrossAttention {
    fn load(decoder: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let cross_attention = T5Attention::load(false, decoder, vb.pp("EncDecAttention"), cfg)?;
        let layer_norm =
            T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
        Ok(Self {
            cross_attention,
            layer_norm,
        })
    }

    fn forward(
        &self,
        hidden_states: &Tensor,
        position_bias: Option<&Tensor>,
        key_value_states: &Tensor,
    ) -> Result<(Tensor, Option<Tensor>)> {
        let normed_hidden_states = self.layer_norm.forward(hidden_states)?;
        let (ys, position_bias) = self.cross_attention.forward(
            &normed_hidden_states,
            position_bias,
            Some(key_value_states),
            None,
        )?;
        let ys = (hidden_states + ys)?;
        Ok((ys, position_bias))
    }

    fn cast_to(&mut self, device: &Device) -> Result<()> {
        self.cross_attention.q = Linear::new(
            self.cross_attention.q.weight().to_device(device)?,
            self.cross_attention
                .q
                .bias()
                .map(|x| x.to_device(device).unwrap()),
        );
        self.cross_attention.k = Linear::new(
            self.cross_attention.k.weight().to_device(device)?,
            self.cross_attention
                .k
                .bias()
                .map(|x| x.to_device(device).unwrap()),
        );
        self.cross_attention.v = Linear::new(
            self.cross_attention.v.weight().to_device(device)?,
            self.cross_attention
                .v
                .bias()
                .map(|x| x.to_device(device).unwrap()),
        );
        self.cross_attention.o = Linear::new(
            self.cross_attention.o.weight().to_device(device)?,
            self.cross_attention
                .o
                .bias()
                .map(|x| x.to_device(device).unwrap()),
        );
        if let Some(embed) = &mut self.cross_attention.relative_attention_bias {
            *embed = Embedding::new(embed.embeddings().to_device(device)?, embed.hidden_size());
        }
        self.layer_norm = T5LayerNorm {
            weight: self.layer_norm.weight.to_device(device)?,
            variance_epsilon: self.layer_norm.variance_epsilon,
        };
        Ok(())
    }
}

trait TensorInfExtend {
    fn is_inf(&self) -> Result<Self>
    where
        Self: Sized;
    fn any(&self) -> Result<bool>;
}

impl TensorInfExtend for Tensor {
    fn is_inf(&self) -> Result<Self> {
        self.broadcast_eq(&Tensor::new(f64::INFINITY, self.device())?.to_dtype(self.dtype())?)
    }

    fn any(&self) -> Result<bool> {
        let sum = self.sum_all()?;
        match self.dtype() {
            DType::U8 => Ok(sum.to_scalar::<u8>()? == 0),
            DType::U32 => Ok(sum.to_scalar::<u32>()? == 0),
            DType::I16 => Ok(sum.to_scalar::<i16>()? == 0),
            DType::I32 => Ok(sum.to_scalar::<i32>()? == 0),
            DType::I64 => Ok(sum.to_scalar::<i64>()? == 0),
            DType::F16 => Ok(sum.to_scalar::<half::f16>()? == half::f16::from_f32_const(0.)),
            DType::BF16 => Ok(sum.to_scalar::<half::bf16>()? == half::bf16::from_f32_const(0.)),
            DType::F32 => Ok(sum.to_scalar::<f32>()? == 0.),
            DType::F64 => Ok(sum.to_scalar::<f64>()? == 0.),
            DType::F8E4M3 => Ok(sum.to_scalar::<F8E4M3>()? == F8E4M3::ZERO),
        }
    }
}

fn clamp_for_f16(xs: &Tensor) -> Result<Tensor> {
    let mut max = match xs.dtype() {
        DType::U8 => u8::MAX as f64 - 1000.,
        DType::U32 => u32::MAX as f64 - 1000.,
        DType::I16 => i16::MAX as f64 - 1000.,
        DType::I32 => i32::MAX as f64 - 1000.,
        DType::I64 => i64::MAX as f64 - 1000.,
        DType::F16 => half::f16::MAX.to_f64_const() - 1000.,
        DType::BF16 => half::bf16::MAX.to_f64_const() - 1000.,
        DType::F32 => f32::MAX as f64 - 1000.,
        DType::F64 => f64::MAX - 1000.,
        DType::F8E4M3 => F8E4M3::MAX.to_f64() - 1000.,
    };
    if xs.is_inf()?.any()? {
        max -= 1000.;
    }
    xs.clamp(-max, max)
}

#[derive(Debug, Clone)]
struct T5Block {
    self_attn: T5LayerSelfAttention,
    cross_attn: Option<T5LayerCrossAttention>,
    ff: T5LayerFF,
}

impl T5Block {
    fn load(
        has_relative_attention_bias: bool,
        decoder: bool,
        vb: VarBuilder,
        cfg: &Config,
    ) -> Result<Self> {
        let vb = vb.pp("layer");
        let self_attn =
            T5LayerSelfAttention::load(has_relative_attention_bias, decoder, vb.pp("0"), cfg)?;
        let cross_attn = if cfg.is_decoder {
            Some(T5LayerCrossAttention::load(decoder, vb.pp("1"), cfg)?)
        } else {
            None
        };
        let ff_i = if cross_attn.is_some() { 2 } else { 1 };
        let ff = T5LayerFF::load(vb.pp(ff_i.to_string()), cfg)?;
        Ok(Self {
            self_attn,
            cross_attn,
            ff,
        })
    }

    fn forward(
        &self,
        xs: &Tensor,
        position_bias: Option<&Tensor>,
        encoder_hidden_states: Option<&Tensor>,
    ) -> Result<(Tensor, Option<Tensor>)> {
        // TODO: Cache masks
        let mask = match self.cross_attn.is_some() {
            true => {
                let mask_len = xs.dim(1)?;
                // If the input seq length is 1, no need for a mask, this is also helpful to avoid shape
                // issues when using the KV cache in the decoder.
                if mask_len <= 1 {
                    None
                } else {
                    Some(get_mask(mask_len, xs.device())?)
                }
            }
            false => None,
        };
        let (mut xs, position_bias) = self.self_attn.forward(xs, position_bias, mask.as_ref())?;
        // Clamp for f16
        if xs.dtype() == DType::F16 {
            xs = clamp_for_f16(&xs)?;
        }
        if let Some(cross_attn) = &self.cross_attn {
            (xs, _) = cross_attn.forward(&xs, None, encoder_hidden_states.unwrap())?;
            // Clamp for f16
            if xs.dtype() == DType::F16 {
                xs = clamp_for_f16(&xs)?;
            }
        }
        let mut xs = self.ff.forward(&xs)?;
        // Clamp for f16
        if xs.dtype() == DType::F16 {
            xs = clamp_for_f16(&xs)?;
        }
        Ok((xs, position_bias))
    }

    fn cast_to(&mut self, device: &Device) -> Result<()> {
        self.self_attn.cast_to(device)?;
        if let Some(cross_attn) = &mut self.cross_attn {
            cross_attn.cast_to(device)?;
        }
        self.ff.cast_to(device)?;
        Ok(())
    }
}

#[derive(Debug, Clone)]
struct T5Stack {
    block: Vec<T5Block>,
    shared: Arc<Embedding>,
    final_layer_norm: T5LayerNorm,
    device: Device,
    offloaded: bool,
}

impl T5Stack {
    fn load(
        decoder: bool,
        vb: VarBuilder,
        shared: &Arc<Embedding>,
        cfg: &Config,
        device: &Device,
        offloaded: bool,
    ) -> Result<Self> {
        let block = (0..cfg.num_layers)
            .map(|i| T5Block::load(i == 0, decoder, vb.pp(format!("block.{i}")), cfg))
            .collect::<Result<Vec<_>>>()?;
        let final_layer_norm = T5LayerNorm::load(
            cfg.d_model,
            cfg.layer_norm_epsilon,
            vb.pp("final_layer_norm").set_device(device.clone()),
        )?;
        Ok(Self {
            block,
            shared: shared.clone(),
            final_layer_norm,
            device: device.clone(),
            offloaded,
        })
    }

    fn forward(
        &mut self,
        input_ids: &Tensor,
        encoder_hidden_states: Option<&Tensor>,
    ) -> Result<Tensor> {
        let input_embeds = self.shared.as_ref().forward(input_ids)?;
        let mut hidden_states = input_embeds;
        let mut position_bias = None;
        for block in self.block.iter_mut() {
            if self.offloaded {
                block.cast_to(&self.device)?;
            }
            (hidden_states, position_bias) = block.forward(
                &hidden_states,
                position_bias.as_ref(),
                encoder_hidden_states,
            )?;
            if self.offloaded {
                block.cast_to(&Device::Cpu)?;
            }
        }
        self.final_layer_norm.forward(&hidden_states)
    }
}

#[derive(Debug, Clone)]
pub struct T5EncoderModel {
    encoder: T5Stack,
}

impl T5EncoderModel {
    pub fn load(vb: VarBuilder, cfg: &Config, device: &Device, offloaded: bool) -> Result<Self> {
        let shared_vb = if vb.contains_tensor("shared.weight") {
            vb.pp("shared")
        } else if vb.contains_tensor("decoder.embed_tokens") {
            vb.pp("decoder").pp("embed_tokens")
        } else {
            vb.pp("encoder").pp("embed_tokens")
        };
        let shared = embedding(
            cfg.vocab_size,
            cfg.d_model,
            shared_vb.set_device(device.clone()),
        )?;
        let shared = Arc::new(shared);
        let encoder = T5Stack::load(false, vb.pp("encoder"), &shared, cfg, device, offloaded)?;
        Ok(Self { encoder })
    }

    pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
        self.encoder.forward(input_ids, None)
    }
}