mistralrs_core/
distributed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use anyhow::Context;
use candle_core::{DType, Device};
use core::ffi::c_char;
use interprocess::local_socket::traits::{Listener, Stream};
use interprocess::local_socket::{GenericNamespaced, Name, ToNsName};
use interprocess::local_socket::{ListenerOptions, Stream as LocalStream};
use mistralrs_quant::{ShardedSafeTensors, ShardedVarBuilder};
use serde::{Deserialize, Serialize};
use serde_big_array::BigArray;
use std::env;
use std::io::{BufRead, BufReader, Write};
use std::process::Command;
use std::str::FromStr;
use std::sync::Arc;
use tracing::{info, warn};

use crate::device_map::DeviceMapper;
use crate::pipeline::{DeviceMappedModelLoader, IsqModelLoader};
use crate::{DeviceMapSetting, IsqOrganization, ModelPaths};

pub(crate) const IS_DAEMON_FLAG: &str = "__MISTRALRS_DAEMON_INTERNAL";

pub fn is_daemon() -> bool {
    std::env::var(IS_DAEMON_FLAG).is_ok()
}

#[derive(Serialize, Deserialize, Debug)]
#[serde(transparent)]
pub(crate) struct BigCCharArray(#[serde(with = "BigArray")] pub(crate) [c_char; 128]);

#[derive(Serialize, Deserialize, Debug)]
pub(crate) enum WorkerTransferData {
    Init {
        id: BigCCharArray,
        worker_rank: usize,
    },
}

pub(crate) fn ipc_name() -> anyhow::Result<Name<'static>> {
    let printname = "mistralrs_daemon.sock";
    Ok(printname.to_ns_name::<GenericNamespaced>()?)
}

#[allow(clippy::too_many_arguments)]
pub(crate) fn prepare_distributed_mapper<
    'a,
    T: DeviceMappedModelLoader + IsqModelLoader + ?Sized,
>(
    dtype: DType,
    device: &Device,
    load_device: &Device,
    available_devices: &[Device],
    config: &str,
    loading_isq: bool,
    from_uqff: bool,
    organization: IsqOrganization,
    model: &T,
    paths: &dyn ModelPaths,
) -> anyhow::Result<(Box<dyn DeviceMapper + Send + Sync>, ShardedVarBuilder<'a>)> {
    #[cfg(not(feature = "nccl"))]
    warn!("NCCL support was included in the build, be sure to build with `--features nccl`.");

    // NCCL case!

    let local_world_size = available_devices.len();
    let global_world_size = if let Ok(x) = std::env::var("MISTRALRS_MN_GLOBAL_WORLD_SIZE") {
        usize::from_str(&x).context("MISTRALRS_MN_GLOBAL_WORLD_SIZE")?
    } else {
        mistralrs_quant::distributed::get_global_tp_size_from_devices()?
    };

    let use_multi_node = std::env::var("MISTRALRS_MN_GLOBAL_WORLD_SIZE").is_ok();
    if use_multi_node {
        info!("MISTRALRS_MN_GLOBAL_WORLD_SIZE is set, entering multi-node.");
    }

    if global_world_size < local_world_size || global_world_size % local_world_size != 0 {
        anyhow::bail!("Global world size {global_world_size} must both be at least and divide the local world size {local_world_size}");
    }

    info!("Local tensor parallel world size is {local_world_size}");
    info!("Global tensor parallel world size is {global_world_size}");

    // TP uses parallel pipelines.
    let name = ipc_name()?;
    let mut id;
    let local_rank = if let Ok(payload) = env::var(IS_DAEMON_FLAG) {
        let payload: WorkerTransferData = serde_json::from_str(&payload)?;
        let WorkerTransferData::Init {
            id: new_id,
            worker_rank,
        } = payload;
        id = mistralrs_quant::Id::uninit(new_id.0);

        let mut stream = LocalStream::connect(name)?;
        stream.write_all(b"ready\n")?;
        worker_rank + 1
    } else {
        id = mistralrs_quant::Id::new();
        let num_workers = mistralrs_quant::distributed::get_global_tp_size_from_devices()? - 1;
        let mut children = Vec::new();
        for worker_rank in 0..num_workers {
            let exe_path = env::current_exe().expect("Failed to get current exe");

            let args: Vec<String> = env::args().collect();

            let mut cmd = Command::new(exe_path);
            cmd.args(&args[1..]);

            let data = WorkerTransferData::Init {
                id: BigCCharArray(*id.internal()),
                worker_rank,
            };

            cmd.env(IS_DAEMON_FLAG, serde_json::to_string(&data)?);

            cmd.stdout(std::process::Stdio::null());
            cmd.stderr(std::process::Stdio::null());
            cmd.stdin(std::process::Stdio::null());

            children.push(cmd.spawn().expect("Failed to spawn process"));
        }

        let listener = ListenerOptions::new().name(name).create_sync()?;
        let mut ready_count = 0;

        while ready_count < num_workers {
            let stream = listener.accept()?;
            let mut reader = BufReader::new(stream);
            let mut message = String::new();
            reader.read_line(&mut message)?;
            if message.trim() == "ready" {
                ready_count += 1;
            }
        }
        info!("All workers have received the ids!");

        0
    };

    if use_multi_node {
        if let Ok(n_nodes) = env::var("MISTRALRS_MN_HEAD_NUM_WORKERS") {
            let n_nodes = usize::from_str(&n_nodes).context("MISTRALRS_MN_HEAD_NUM_WORKERS")?;
            info!("Head node managing {n_nodes} workers.");
            let Ok(port) = env::var("MISTRALRS_MN_HEAD_PORT") else {
                anyhow::bail!("Got MISTRALRS_MN_HEAD_NUM_WORKERS, expected MISTRALRS_MN_HEAD_PORT");
            };
            info!("Head node initializing connection on {port}.");
            let server = mistralrs_quant::Server::new(
                &format!("0.0.0.0:{port}"),
                n_nodes,
                local_world_size,
            )?;

            server.broadcast_id(&id)?;
        } else if let Ok(addr) = env::var("MISTRALRS_MN_WORKER_SERVER_ADDR") {
            info!("Worker node connecting to {addr}.");
            let client = mistralrs_quant::Client::new(addr.parse()?, local_world_size)?;

            id = client.receive_id()?;
        }
    }

    let rank_offset = if env::var("MISTRALRS_MN_WORKER_SERVER_ADDR").is_ok() {
        let Ok(node_id) = env::var("MISTRALRS_MN_WORKER_ID") else {
            anyhow::bail!("Got MISTRALRS_MN_WORKER_SERVER_ADDR, expected MISTRALRS_MN_WORKER_ID");
        };
        let node_id = usize::from_str(&node_id).context("MISTRALRS_MN_WORKER_ID")?;
        info!("Worker ID is {node_id}.");
        (node_id + 1) * local_world_size
    } else {
        0
    };

    // They each block on each other
    // https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/comms.html?ncclcomminitrank#ncclcomminitrank
    let comm = mistralrs_quant::Comm::from_device(
        id,
        device,
        local_rank + rank_offset,
        global_world_size,
    )?;

    let make_dummy_regexes = if loading_isq && from_uqff {
        // Dummy weights for the layers which will be overwritten...
        Some(std::sync::Arc::new(
            if matches!(organization, IsqOrganization::MoeExpertsOnly) {
                model.isq_layer_regexes_moqe(config)?
            } else {
                model.isq_layer_regexes(config)?
            },
        ))
    } else {
        None
    };

    let sharded_vb = unsafe {
        ShardedSafeTensors::sharded(
            paths.get_weight_filenames(),
            dtype,
            load_device,
            make_dummy_regexes,
        )?
    };

    info!("Loading all ranks.");
    // The mapper is specific to this pipeline
    let mapper = DeviceMapSetting::Nccl {
        nm_device: available_devices[0].clone(),
        comm: Arc::new(comm),
    }
    .into_mapper(model.num_layers(config)?, device, None)?;

    let sharded_vb = if !loading_isq {
        sharded_vb.clone().set_device(device.clone())
    } else {
        sharded_vb.clone()
    };

    Ok((mapper, sharded_vb))
}