1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use std::ops::Add;
4
5use candle_core::{DType, Device, Result, Tensor, WithDType, D};
6
7use crate::pipeline::KvCache;
8
9pub struct CausalMasker;
11
12pub fn masked_fill<D: WithDType>(xs: &Tensor, mask: &Tensor, value: D) -> Result<Tensor> {
15 let on_true = Tensor::full(value, xs.shape(), xs.device())?.to_dtype(xs.dtype())?;
16 let on_false = xs;
17 let res = mask
18 .broadcast_as(xs.shape())?
19 .where_cond(&on_true, on_false)?;
20 Ok(res)
21}
22
23pub trait PastKvLenCache {
24 fn get_past_kv_len(&self) -> Result<usize>;
25}
26
27impl PastKvLenCache for Vec<KvCache> {
28 fn get_past_kv_len(&self) -> Result<usize> {
29 let kv_cache_1 = &self[0];
30 Ok(kv_cache_1.current_seq_len())
31 }
32}
33
34impl PastKvLenCache for &[usize] {
35 fn get_past_kv_len(&self) -> Result<usize> {
36 if self.windows(2).all(|w| w[0] == w[1]) {
37 Ok(self[0])
38 } else {
39 Ok(0)
40 }
41 }
42}
43
44impl PastKvLenCache for Vec<Option<(Tensor, Tensor)>> {
45 fn get_past_kv_len(&self) -> Result<usize> {
46 let kv_cache_1 = &self[0];
47 if kv_cache_1.is_none() {
48 return Ok(0);
49 }
50 let k_cache_1 = &kv_cache_1.as_ref().unwrap().0;
51 Ok(k_cache_1.dims()[2])
52 }
53}
54
55impl CausalMasker {
56 fn make_mask(&self, tgt_len: usize, past_kv_len: usize, device: &Device) -> Result<Tensor> {
57 let offset = tgt_len + past_kv_len;
58 let mask: Vec<_> = (0..tgt_len)
59 .flat_map(|i| (0..offset).map(move |j| u8::from(j + tgt_len > i + offset)))
60 .collect();
61 Tensor::from_slice(&mask, (tgt_len, offset), device)
62 }
63
64 fn make_mask_chunked(
65 &self,
66 tgt_len: usize,
67 past_kv_len: usize,
68 chunk_size: usize,
69 device: &Device,
70 ) -> Result<Tensor> {
71 let offset = tgt_len + past_kv_len;
72 let mask: Vec<_> = (0..tgt_len)
73 .flat_map(|i| {
74 (0..offset).map(move |j| {
75 if j < past_kv_len {
77 return 0;
78 }
79
80 let j_adj = j - past_kv_len;
82
83 let i_block = i / chunk_size;
85 let j_block = j_adj / chunk_size;
86 let block_pos = (i_block as isize - j_block as isize).abs();
87
88 let token_pos = j_adj as isize - i as isize;
90
91 1 - u8::from((block_pos == 0) && (token_pos <= 0))
93 })
94 })
95 .collect();
96
97 Tensor::from_slice(&mask, (tgt_len, offset), device)
98 }
99
100 fn make_swa_mask(
101 &self,
102 tgt_len: usize,
103 seqlen_offset: usize,
104 sliding_window: usize,
105 device: &Device,
106 dtype: DType,
107 ) -> Result<Tensor> {
108 let mask: Vec<_> = (0..tgt_len)
109 .flat_map(|i| {
110 (0..tgt_len).map(move |j| {
111 if i < j || j + sliding_window < i {
112 f32::NEG_INFINITY
113 } else {
114 0.
115 }
116 })
117 })
118 .collect();
119 let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), device)?;
120 let mask = if seqlen_offset > 0 {
121 let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, device)?;
122 Tensor::cat(&[&mask0, &mask], D::Minus1)?
123 } else {
124 mask
125 };
126 mask.to_dtype(dtype)
127 }
128
129 pub fn expand_mask(
132 &self,
133 mask: &Tensor,
134 dtype: DType,
135 tgt_len: Option<usize>,
136 ) -> Result<Tensor> {
137 let (bs, src_len) = mask.dims2()?;
138
139 let expanded_mask = mask.unsqueeze(1)?.unsqueeze(1)?;
140 let expanded_mask = expanded_mask
141 .expand((bs, 1, tgt_len.unwrap_or(src_len), src_len))?
142 .to_dtype(dtype)?;
143
144 let inverted_mask = expanded_mask.neg()?.add(1.0f64)?;
145 masked_fill(
146 &inverted_mask,
147 &inverted_mask.to_dtype(DType::U8)?,
148 f32::MIN,
149 )
150 }
151
152 pub fn calculate_past_kv_len(
153 &self,
154 cache: &[Option<(Tensor, Tensor)>],
155 ) -> candle_core::Result<usize> {
156 let kv_cache_1 = &cache[0];
157 if kv_cache_1.is_none() {
158 return Ok(0);
159 }
160 let k_cache_1 = &kv_cache_1.as_ref().unwrap().0;
161 Ok(k_cache_1.dims()[2])
162 }
163
164 pub fn make_causal_mask_matrix(
165 &self,
166 input_ids: &Tensor,
167 cache: &dyn PastKvLenCache,
168 dtype: DType,
169 _n_attn_heads: usize,
170 ) -> Result<Option<Tensor>> {
171 let past_kv_len = cache.get_past_kv_len()?;
172 let (_b_sz, tgt_len) = input_ids.dims2()?;
173 if tgt_len == 1 {
174 return Ok(None);
175 }
176
177 let mut causal_mask = self
178 .make_mask(tgt_len, past_kv_len, input_ids.device())?
179 .to_dtype(DType::U8)?;
180
181 let zero = Tensor::new(0.0f32, input_ids.device())?;
182 causal_mask = {
183 let mut mask =
184 causal_mask.broadcast_as((causal_mask.dims()[0], causal_mask.dims()[1]))?;
185 mask = masked_fill(
187 &zero.to_dtype(dtype)?.broadcast_as(mask.shape())?,
188 &mask,
189 f32::NEG_INFINITY,
190 )?;
191 mask
192 };
193
194 Ok(Some(causal_mask))
195 }
196
197 pub fn make_chunked_mask_matrix(
198 &self,
199 input_ids: &Tensor,
200 chunk_size: usize,
201 cache: &dyn PastKvLenCache,
202 dtype: DType,
203 _n_attn_heads: usize,
204 ) -> Result<Option<Tensor>> {
205 let past_kv_len = cache.get_past_kv_len()?;
206 let (_b_sz, tgt_len) = input_ids.dims2()?;
207 if tgt_len == 1 {
208 return Ok(None);
209 }
210
211 let mut causal_mask = self
212 .make_mask_chunked(tgt_len, past_kv_len, chunk_size, input_ids.device())?
213 .to_dtype(DType::U8)?;
214
215 let zero = Tensor::new(0.0f32, input_ids.device())?;
216 causal_mask = {
217 let mut mask =
218 causal_mask.broadcast_as((causal_mask.dims()[0], causal_mask.dims()[1]))?;
219 mask = masked_fill(
221 &zero.to_dtype(dtype)?.broadcast_as(mask.shape())?,
222 &mask,
223 f32::NEG_INFINITY,
224 )?;
225 mask
226 };
227
228 Ok(Some(causal_mask))
229 }
230
231 pub fn make_sliding_window_causal_mask_matrix(
232 &self,
233 input_ids: &Tensor,
234 cache: &dyn PastKvLenCache,
235 sliding_window: Option<usize>,
236 dtype: DType,
237 n_attn_heads: usize,
238 ) -> Result<Option<Tensor>> {
239 if sliding_window.is_none() {
240 return self.make_causal_mask_matrix(input_ids, cache, dtype, n_attn_heads);
241 }
242 let (_b_sz, tgt_len) = input_ids.dims2()?;
243 let sliding_window = sliding_window.unwrap();
244 let past_kv_len = cache
247 .get_past_kv_len()?
248 .min(sliding_window.saturating_sub(tgt_len));
249 if tgt_len == 1 {
250 return Ok(None);
251 }
252
253 Ok(Some(self.make_swa_mask(
254 tgt_len,
255 past_kv_len,
256 sliding_window,
257 input_ids.device(),
258 dtype,
259 )?))
260 }
261
262 pub fn apply_mask_one_and_zero(
263 &self,
264 mask: &Option<Tensor>,
265 att: Tensor,
266 neg_inf: &Tensor,
267 ) -> Result<Tensor> {
268 match mask {
269 None => Ok(att),
270 Some(mask) => {
271 let mask = mask.broadcast_as(att.shape())?;
272 mask.where_cond(
273 &neg_inf
274 .to_device(att.device())?
275 .to_dtype(att.dtype())?
276 .broadcast_as(att.dims())?,
277 &att,
278 )
279 }
280 }
281 }
282}