mistralrs_core/
model_selected.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
use std::path::PathBuf;

use clap::Subcommand;

use crate::{
    pipeline::{IsqOrganization, NormalLoaderType, VisionLoaderType},
    DiffusionLoaderType, ModelDType,
};

fn parse_arch(x: &str) -> Result<NormalLoaderType, String> {
    x.parse()
}

fn parse_vision_arch(x: &str) -> Result<VisionLoaderType, String> {
    x.parse()
}

fn parse_diffusion_arch(x: &str) -> Result<DiffusionLoaderType, String> {
    x.parse()
}

fn parse_model_dtype(x: &str) -> Result<ModelDType, String> {
    x.parse()
}

#[derive(Debug, Subcommand)]
pub enum ModelSelected {
    /// Select the model from a toml file
    Toml {
        /// .toml file containing the selector configuration.
        #[arg(short, long)]
        file: String,
    },

    /// Select a plain model, without quantization or adapters
    Plain {
        /// Model ID to load from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        model_id: String,

        /// Path to local tokenizer.json file. If this is specified it is used over any remote file.
        #[arg(short, long)]
        tokenizer_json: Option<String>,

        /// The architecture of the model.
        #[arg(short, long, value_parser = parse_arch)]
        arch: Option<NormalLoaderType>,

        /// Model data type. Defaults to `auto`.
        #[arg(short, long, default_value_t = ModelDType::Auto, value_parser = parse_model_dtype)]
        dtype: ModelDType,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,

        #[allow(rustdoc::bare_urls)]
        /// ISQ organization: `default` or `moqe` (Mixture of Quantized Experts: https://arxiv.org/abs/2310.02410).
        #[arg(short, long)]
        organization: Option<IsqOrganization>,

        /// UQFF path to write to.
        #[arg(short, long)]
        write_uqff: Option<PathBuf>,

        /// UQFF path to load from. If provided, this takes precedence over applying ISQ.
        #[arg(short, long)]
        from_uqff: Option<PathBuf>,

        /// .imatrix file to enhance GGUF quantizations with.
        /// Incompatible with `--calibration-file/-c`
        #[arg(short, long)]
        imatrix: Option<PathBuf>,

        /// Generate and utilize an imatrix to enhance GGUF quantizations.
        /// Incompatible with `--imatrix/-i`
        #[arg(short, long)]
        calibration_file: Option<PathBuf>,
    },

    /// Select an X-LoRA architecture
    XLora {
        /// Force a base model ID to load from instead of using the ordering file. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        model_id: Option<String>,

        /// Path to local tokenizer.json file. If this is specified it is used over any remote file.
        #[arg(short, long)]
        tokenizer_json: Option<String>,

        /// Model ID to load X-LoRA from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        xlora_model_id: String,

        /// Ordering JSON file
        #[arg(short, long)]
        order: String,

        /// Index of completion tokens to generate scalings up until. If this is 1, then there will be one completion token generated before it is cached.
        /// This makes the maximum running sequences 1.
        #[arg(long)]
        tgt_non_granular_index: Option<usize>,

        /// The architecture of the model.
        #[arg(short, long, value_parser = parse_arch)]
        arch: Option<NormalLoaderType>,

        /// Model data type. Defaults to `auto`.
        #[arg(short, long, default_value_t = ModelDType::Auto, value_parser = parse_model_dtype)]
        dtype: ModelDType,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,

        /// UQFF path to write to.
        #[arg(short, long)]
        write_uqff: Option<PathBuf>,

        /// UQFF path to load from. If provided, this takes precedence over applying ISQ.
        #[arg(short, long)]
        from_uqff: Option<PathBuf>,
    },

    /// Select a LoRA architecture
    Lora {
        /// Force a base model ID to load from instead of using the ordering file. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        model_id: Option<String>,

        /// Path to local tokenizer.json file. If this is specified it is used over any remote file.
        #[arg(short, long)]
        tokenizer_json: Option<String>,

        /// Model ID to load LoRA from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        adapters_model_id: String,

        /// Ordering JSON file
        #[arg(short, long)]
        order: String,

        /// The architecture of the model.
        #[arg(long, value_parser = parse_arch)]
        arch: Option<NormalLoaderType>,

        /// Model data type. Defaults to `auto`.
        #[arg(short, long, default_value_t = ModelDType::Auto, value_parser = parse_model_dtype)]
        dtype: ModelDType,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,

        /// UQFF path to write to.
        #[arg(short, long)]
        write_uqff: Option<PathBuf>,

        /// UQFF path to load from. If provided, this takes precedence over applying ISQ.
        #[arg(short, long)]
        from_uqff: Option<PathBuf>,
    },

    /// Select a GGUF model.
    GGUF {
        /// `tok_model_id` is the local or remote model ID where you can find a `tokenizer_config.json` file.
        /// If the `chat_template` is specified, then it will be treated as a path and used over remote files,
        /// removing all remote accesses.
        #[arg(short, long)]
        tok_model_id: Option<String>,

        /// Quantized model ID to find the `quantized_filename`.
        /// This may be a HF hub repo or a local path.
        #[arg(short = 'm', long)]
        quantized_model_id: String,

        /// Quantized filename(s).
        /// May be a single filename, or use a delimiter of " " (a single space) for multiple files.
        #[arg(short = 'f', long)]
        quantized_filename: String,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,
    },

    /// Select a GGUF model with X-LoRA.
    XLoraGGUF {
        /// `tok_model_id` is the local or remote model ID where you can find a `tokenizer_config.json` file.
        /// If the `chat_template` is specified, then it will be treated as a path and used over remote files,
        /// removing all remote accesses.
        #[arg(short, long)]
        tok_model_id: Option<String>,

        /// Quantized model ID to find the `quantized_filename`.
        /// This may be a HF hub repo or a local path.
        #[arg(short = 'm', long)]
        quantized_model_id: String,

        /// Quantized filename(s).
        /// May be a single filename, or use a delimiter of " " (a single space) for multiple files.
        #[arg(short = 'f', long)]
        quantized_filename: String,

        /// Model ID to load X-LoRA from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        xlora_model_id: String,

        /// Ordering JSON file
        #[arg(short, long)]
        order: String,

        /// Index of completion tokens to generate scalings up until. If this is 1, then there will be one completion token generated before it is cached.
        /// This makes the maximum running sequences 1.
        #[arg(long)]
        tgt_non_granular_index: Option<usize>,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,
    },

    /// Select a GGUF model with LoRA.
    LoraGGUF {
        /// `tok_model_id` is the local or remote model ID where you can find a `tokenizer_config.json` file.
        /// If the `chat_template` is specified, then it will be treated as a path and used over remote files,
        /// removing all remote accesses.
        #[arg(short, long)]
        tok_model_id: Option<String>,

        /// Quantized model ID to find the `quantized_filename`.
        /// This may be a HF hub repo or a local path.
        #[arg(short = 'm', long)]
        quantized_model_id: String,

        /// Quantized filename(s).
        /// May be a single filename, or use a delimiter of " " (a single space) for multiple files.
        #[arg(short = 'f', long)]
        quantized_filename: String,

        /// Model ID to load LoRA from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        adapters_model_id: String,

        /// Ordering JSON file
        #[arg(short, long)]
        order: String,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,
    },

    /// Select a GGML model.
    GGML {
        /// Model ID to load the tokenizer from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        tok_model_id: String,

        /// Path to local tokenizer.json file. If this is specified it is used over any remote file.
        #[arg(long)]
        tokenizer_json: Option<String>,

        /// Quantized model ID to find the `quantized_filename`.
        /// This may be a HF hub repo or a local path.
        #[arg(short = 'm', long)]
        quantized_model_id: String,

        /// Quantized filename.
        #[arg(short = 'f', long)]
        quantized_filename: String,

        /// GQA value
        #[arg(short, long, default_value_t = 1)]
        gqa: usize,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,
    },

    /// Select a GGML model with X-LoRA.
    XLoraGGML {
        /// Model ID to load the tokenizer from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        tok_model_id: Option<String>,

        /// Path to local tokenizer.json file. If this is specified it is used over any remote file.
        #[arg(long)]
        tokenizer_json: Option<String>,

        /// Quantized model ID to find the `quantized_filename`.
        /// This may be a HF hub repo or a local path.
        #[arg(short = 'm', long)]
        quantized_model_id: String,

        /// Quantized filename.
        #[arg(short = 'f', long)]
        quantized_filename: String,

        /// Model ID to load X-LoRA from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        xlora_model_id: String,

        /// Ordering JSON file
        #[arg(short, long)]
        order: String,

        /// Index of completion tokens to generate scalings up until. If this is 1, then there will be one completion token generated before it is cached.
        /// This makes the maximum running sequences 1.
        #[arg(long)]
        tgt_non_granular_index: Option<usize>,

        /// GQA value
        #[arg(short, long, default_value_t = 1)]
        gqa: usize,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,
    },

    /// Select a GGML model with LoRA.
    LoraGGML {
        /// Model ID to load the tokenizer from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        tok_model_id: Option<String>,

        /// Path to local tokenizer.json file. If this is specified it is used over any remote file.
        #[arg(long)]
        tokenizer_json: Option<String>,

        /// Quantized model ID to find the `quantized_filename`.
        /// This may be a HF hub repo or a local path.
        #[arg(short = 'm', long)]
        quantized_model_id: String,

        /// Quantized filename.
        #[arg(short = 'f', long)]
        quantized_filename: String,

        /// Model ID to load LoRA from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        adapters_model_id: String,

        /// Ordering JSON file
        #[arg(short, long)]
        order: String,

        /// GQA value
        #[arg(short, long, default_value_t = 1)]
        gqa: usize,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,
    },

    /// Select a vision plain model, without quantization or adapters
    VisionPlain {
        /// Model ID to load from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        model_id: String,

        /// Path to local tokenizer.json file. If this is specified it is used over any remote file.
        #[arg(short, long)]
        tokenizer_json: Option<String>,

        /// The architecture of the model.
        #[arg(short, long, value_parser = parse_vision_arch)]
        arch: VisionLoaderType,

        /// Model data type. Defaults to `auto`.
        #[arg(short, long, default_value_t = ModelDType::Auto, value_parser = parse_model_dtype)]
        dtype: ModelDType,

        /// Path to a topology YAML file.
        #[arg(long)]
        topology: Option<String>,

        /// UQFF path to write to.
        #[arg(short, long)]
        write_uqff: Option<PathBuf>,

        /// UQFF path to load from. If provided, this takes precedence over applying ISQ.
        #[arg(short, long)]
        from_uqff: Option<PathBuf>,

        /// Automatically resize and pad images to this maximum edge length. Aspect ratio is preserved.
        /// This is only supported on the Qwen2-VL and Idefics 2 models. Others handle this internally.
        #[arg(short = 'e', long)]
        max_edge: Option<u32>,

        /// Generate and utilize an imatrix to enhance GGUF quantizations.
        #[arg(short, long)]
        calibration_file: Option<PathBuf>,
    },

    /// Select a diffusion plain model, without quantization or adapters
    DiffusionPlain {
        /// Model ID to load from. This may be a HF hub repo or a local path.
        #[arg(short, long)]
        model_id: String,

        /// The architecture of the model.
        #[arg(short, long, value_parser = parse_diffusion_arch)]
        arch: DiffusionLoaderType,

        /// Model data type. Defaults to `auto`.
        #[arg(short, long, default_value_t = ModelDType::Auto, value_parser = parse_model_dtype)]
        dtype: ModelDType,
    },
}