#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
use std::collections::HashMap;
use std::sync::Arc;
use crate::attention::SdpaParams;
use crate::device_map::DeviceMapper;
use crate::gguf::Content;
use crate::layers::{CausalMasker, MatMul, QLinear, RotaryEmbedding, Sdpa};
use crate::layers_masker::PastKvLenCache;
use crate::paged_attention::{AttentionImplementation, PagedAttention};
use crate::pipeline::text_models_inputs_processor::PagedAttentionInputMetadata;
use crate::pipeline::{EitherCache, KvCache, NormalCache};
use crate::utils::gguf_metadata::ContentMetadata;
use crate::utils::model_config as ModelConfig;
use crate::utils::progress::NiceProgressBar;
use crate::{DeviceMapMetadata, Topology};
use candle_core::quantized::QMatMul;
use candle_core::quantized::QTensor;
use candle_core::{DType, Device, IndexOp, Module, Result, Tensor};
use candle_nn::{Embedding, LayerNorm};
use mistralrs_quant::{GgufMatMul, QuantMethod, QuantMethodConfig};
#[derive(Clone)]
struct Mlp {
ffn_up: Arc<dyn QuantMethod>,
ffn_down: Arc<dyn QuantMethod>,
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
MatMul.qmethod_matmul(
&MatMul
.qmethod_matmul(xs, &*self.ffn_up)?
.apply(&candle_nn::Activation::GeluPytorchTanh)?,
&*self.ffn_down,
)
}
}
fn layer_norm(w: QTensor, b: QTensor, eps: f64) -> Result<LayerNorm> {
let w = w.dequantize(&w.device())?;
let b = b.dequantize(&b.device())?;
let ln = LayerNorm::new(w, b, eps);
Ok(ln)
}
struct LayerWeights {
attn_q: Arc<dyn QuantMethod>,
attn_k: Arc<dyn QuantMethod>,
attn_v: Arc<dyn QuantMethod>,
attn_output: Arc<dyn QuantMethod>,
attn_norm: LayerNorm,
ffn_norm: LayerNorm,
mlp: Mlp,
n_head: usize,
n_kv_head: usize,
head_dim: usize,
rotary_emb: Arc<RotaryEmbedding>,
paged_attn: Option<PagedAttention>,
sdpa_params: SdpaParams,
dtype: DType,
}
impl LayerWeights {
fn forward_attn(
&self,
x: &Tensor,
mask: Option<&Tensor>,
seqlen_offsets: &[usize],
start_offsets_kernel: Tensor,
kv_cache: &mut KvCache,
metadata: Option<((Tensor, Tensor), &mut PagedAttentionInputMetadata)>,
) -> Result<Tensor> {
let (b_sz, q_len, hidden_size) = x.dims3()?;
let q = MatMul
.qmethod_matmul(x, &*self.attn_q)?
.to_dtype(self.dtype)?;
let k = MatMul
.qmethod_matmul(x, &*self.attn_k)?
.to_dtype(self.dtype)?;
let v = MatMul
.qmethod_matmul(x, &*self.attn_v)?
.to_dtype(self.dtype)?;
let mut q = q.reshape((b_sz * q_len, self.n_head, self.head_dim))?;
let mut k = k.reshape((b_sz * q_len, self.n_kv_head, self.head_dim))?;
let v = if q_len != 1 {
v.reshape((b_sz, q_len, self.n_kv_head, self.head_dim))?
.transpose(1, 2)?
} else {
v.reshape((b_sz, self.n_kv_head, q_len, self.head_dim))?
};
self.rotary_emb
.forward(seqlen_offsets, &start_offsets_kernel, &mut q, &mut k, b_sz)?;
if q.rank() == 3 && q_len != 1 {
q = q
.reshape((b_sz, q_len, self.n_head, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
k = k
.reshape((b_sz, q_len, self.n_kv_head, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
} else if q.rank() == 3 {
q = q
.reshape((b_sz, self.n_head, q_len, self.head_dim))?
.contiguous()?;
k = k
.reshape((b_sz, self.n_kv_head, q_len, self.head_dim))?
.contiguous()?;
}
let y = match &self.paged_attn {
Some(paged_attn) => {
let ((key_cache, value_cache), input_metadata) = metadata.unwrap();
paged_attn.forward(
&q,
&k,
&v,
mask,
Some(key_cache),
Some(value_cache),
input_metadata,
None,
)?
}
None => {
let (k, v) = kv_cache.append(&k, &v)?;
Sdpa.run_attention(&q, &k, &v, mask, None, &self.sdpa_params)?
}
};
let y = if mask.is_some() {
y.transpose(1, 2)?.reshape(&[b_sz, q_len, hidden_size])?
} else {
y.reshape(&[b_sz, q_len, hidden_size])?
};
MatMul.qmethod_matmul(&y.to_dtype(x.dtype())?, &*self.attn_output)
}
}
pub struct ModelWeights {
tok_embeddings: Embedding,
layers: Vec<LayerWeights>,
output_norm: LayerNorm,
output: QMatMul,
mapper: Option<Box<dyn DeviceMapper + Send + Sync>>,
pub device: Device,
pub cache: EitherCache,
pub max_seq_len: usize,
dtype: DType,
}
pub(crate) struct PropsGGUF {
pub head_count: usize,
pub head_count_kv: usize,
pub block_count: usize,
pub embedding_length: usize,
pub layer_norm_epsilon: f64,
pub context_window: usize,
pub rope_freq_base: f32,
}
impl TryFrom<ContentMetadata<'_>> for PropsGGUF {
type Error = anyhow::Error;
fn try_from(c: ContentMetadata) -> std::result::Result<Self, Self::Error> {
c.verify_arch("starcoder2")?;
let required = [
"attention.head_count",
"attention.head_count_kv",
"block_count",
"embedding_length",
"attention.layer_norm_epsilon",
"context_length",
];
c.has_required_keys(&required)?;
let props = Self {
head_count: c.get_value::<u32>("attention.head_count")? as usize,
head_count_kv: c.get_value::<u32>("attention.head_count_kv")? as usize,
block_count: c.get_value::<u32>("block_count")? as usize,
embedding_length: c.get_value::<u32>("embedding_length")? as usize,
layer_norm_epsilon: c.get_value::<f32>("attention.layer_norm_epsilon")? as f64,
context_window: c.get_value::<u32>("context_length")? as usize,
rope_freq_base: c.get_value("rope.freq_base").ok().unwrap_or(100_000_f32),
};
Ok(props)
}
}
impl ModelConfig::FromGGUF for ModelWeights {
fn from_gguf<R: std::io::Seek + std::io::Read>(
mut ct: Content<'_, R>,
device: &Device,
mapper: DeviceMapMetadata,
topology: Option<&'_ Topology>,
attention_mechanism: AttentionImplementation,
dtype: DType,
) -> Result<Self> {
let metadata = ContentMetadata {
path_prefix: "starcoder2",
metadata: ct.get_metadata(),
};
let PropsGGUF {
head_count,
head_count_kv,
block_count,
embedding_length,
layer_norm_epsilon,
context_window,
rope_freq_base,
} = PropsGGUF::try_from(metadata).or_else(|err| candle_core::bail!("{err}"))?;
let tok_embeddings = ct.tensor("token_embd.weight", device)?;
let tok_embeddings = tok_embeddings.dequantize(device)?;
let head_dim = embedding_length / head_count;
let output_norm = layer_norm(
ct.tensor("output_norm.weight", device)?,
ct.tensor("output_norm.bias", device)?,
layer_norm_epsilon,
)?;
let output = QMatMul::from_qtensor(ct.tensor("output.weight", device)?)?;
let mut layers = Vec::with_capacity(block_count);
let mapper = mapper.into_mapper(block_count, device, topology)?;
let mut ropes = HashMap::new();
for layer_idx in 0..block_count {
let device = mapper.device_for(layer_idx, false).unwrap_or(device);
ropes.insert(
device.location(),
Arc::new(RotaryEmbedding::new(
rope_freq_base,
head_dim,
context_window,
device,
true,
dtype,
)?),
);
}
for layer_idx in NiceProgressBar::<_, 'b'>(0..block_count, "Loading repeating layers") {
let prefix = format!("blk.{layer_idx}");
let device = mapper.device_for(layer_idx, false).unwrap_or(device);
let rotary = ropes
.get(&device.location())
.expect("No RoPE for device location!")
.clone();
let ffn_up = QLinear::new(&mut ct, &format!("{prefix}.ffn_up"), device)?;
let ffn_down = QLinear::new(&mut ct, &format!("{prefix}.ffn_down"), device)?;
let QMatMul::QTensor(ffn_up_w) = ffn_up.inner_ref().clone() else {
unreachable!()
};
let QMatMul::QTensor(ffn_down_w) = ffn_down.inner_ref().clone() else {
unreachable!()
};
let mlp = Mlp {
ffn_up: Arc::new(GgufMatMul::new(QuantMethodConfig::Gguf {
q_weight: ffn_up_w,
b: ffn_up.bias().cloned(),
})?),
ffn_down: Arc::new(GgufMatMul::new(QuantMethodConfig::Gguf {
q_weight: ffn_down_w,
b: ffn_down.bias().cloned(),
})?),
};
let attn_norm = layer_norm(
ct.tensor(&format!("{prefix}.attn_norm.weight"), device)?,
ct.tensor(&format!("{prefix}.attn_norm.bias"), device)?,
layer_norm_epsilon,
)?;
let ffn_norm = layer_norm(
ct.tensor(&format!("{prefix}.ffn_norm.weight"), device)?,
ct.tensor(&format!("{prefix}.ffn_norm.bias"), device)?,
layer_norm_epsilon,
)?;
let attn_q = QLinear::new(&mut ct, &format!("{prefix}.attn_q"), device)?;
let attn_k = QLinear::new(&mut ct, &format!("{prefix}.attn_k"), device)?;
let attn_v = QLinear::new(&mut ct, &format!("{prefix}.attn_v"), device)?;
let attn_output = QLinear::new(&mut ct, &format!("{prefix}.attn_output"), device)?;
let paged_attn = match &attention_mechanism {
AttentionImplementation::Eager => None,
AttentionImplementation::PagedAttention => Some(PagedAttention::new(
head_count,
head_dim,
(1.0 / (head_dim as f64).sqrt()) as f32,
Some(head_count_kv),
None,
device,
None,
)?),
};
let QMatMul::QTensor(q_w) = attn_q.inner_ref().clone() else {
unreachable!()
};
let QMatMul::QTensor(k_w) = attn_k.inner_ref().clone() else {
unreachable!()
};
let QMatMul::QTensor(v_w) = attn_v.inner_ref().clone() else {
unreachable!()
};
let QMatMul::QTensor(o_w) = attn_output.inner_ref().clone() else {
unreachable!()
};
layers.push(LayerWeights {
attn_q: Arc::new(GgufMatMul::new(QuantMethodConfig::Gguf {
q_weight: q_w,
b: attn_q.bias().cloned(),
})?),
attn_k: Arc::new(GgufMatMul::new(QuantMethodConfig::Gguf {
q_weight: k_w,
b: attn_k.bias().cloned(),
})?),
attn_v: Arc::new(GgufMatMul::new(QuantMethodConfig::Gguf {
q_weight: v_w,
b: attn_v.bias().cloned(),
})?),
attn_output: Arc::new(GgufMatMul::new(QuantMethodConfig::Gguf {
q_weight: o_w,
b: attn_output.bias().cloned(),
})?),
attn_norm,
ffn_norm,
mlp,
n_head: head_count,
n_kv_head: head_count_kv,
head_dim,
rotary_emb: rotary,
paged_attn,
sdpa_params: SdpaParams {
n_kv_groups: head_count / head_count_kv,
use_flash_attn: false,
softcap: None,
softmax_scale: 1.0 / (head_dim as f32).sqrt(),
sliding_window: None,
},
dtype,
})
}
Ok(Self {
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
layers,
output_norm,
output,
mapper: Some(mapper),
device: device.clone(),
cache: EitherCache::Normal(NormalCache::new(block_count, context_window)),
max_seq_len: context_window,
dtype,
})
}
}
impl ModelWeights {
pub fn forward(
&self,
input_ids: &Tensor,
seqlen_offsets: &[usize],
start_offsets_kernel: Tensor,
mut metadata: Option<(Vec<(Tensor, Tensor)>, &mut PagedAttentionInputMetadata)>,
) -> Result<Tensor> {
let (_b_sz, seq_len) = input_ids.dims2()?;
let mut xs = self.tok_embeddings.forward(input_ids)?;
let cache = &mut self.cache.normal().0;
let mask = CausalMasker.make_causal_mask_matrix(
input_ids,
metadata
.as_ref()
.map(|(_, _)| &seqlen_offsets as &dyn PastKvLenCache)
.unwrap_or(cache as &dyn PastKvLenCache),
self.dtype,
self.layers[0].n_head,
)?;
for (i, layer) in self.layers.iter().enumerate() {
if let Some(ref mapper) = self.mapper {
xs = mapper.map(xs, i)?;
}
let residual = &xs;
let ys = xs.apply(&layer.attn_norm)?;
let ys = layer.forward_attn(
&ys,
mask.as_ref()
.map(|m| m.to_device(xs.device()).unwrap())
.as_ref(),
seqlen_offsets,
start_offsets_kernel.clone(),
&mut cache[i],
metadata
.as_mut()
.map(|(kv_cache, metadata)| (kv_cache[i].clone(), &mut **metadata)),
)?;
let ys = (ys + residual)?;
let residual = &ys;
let ys = ys.apply(&layer.ffn_norm)?;
let ys = layer.mlp.forward(&ys)?;
xs = (ys + residual)?
}
let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
MatMul.qmatmul(&xs, &self.output)
}
}