1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use candle_core::{DType, Device, Module, Result, Tensor};
4use candle_nn::{LayerNorm, Linear};
5use mistralrs_quant::{
6 ColumnParallelLayer, QuantMethod, QuantMethodConfig, QuantizedConfig, RowParallelLayer,
7 ShardedVarBuilder, UnquantLinear,
8};
9use std::{collections::HashMap, sync::Arc};
10
11use crate::{
12 amoe::{AnyMoeBaseModelMixin, AnyMoeTrainableLayer, MlpLayer, MoeMlp},
13 attention::SdpaParams,
14 device_map::DeviceMapper,
15 get_delta_from_lora_ab,
16 layers::{embedding, layer_norm, Activation, CausalMasker, MatMul, RotaryEmbedding, Sdpa},
17 layers_masker::PastKvLenCache,
18 paged_attention::{AttentionImplementation, ModelConfigMetadata, PagedAttention},
19 pipeline::{
20 extract_logits,
21 text_models_inputs_processor::{FlashParams, PagedAttentionInputMetadata},
22 EitherCache, IsqModel, KvCache, NormalCache, NormalLoadingMetadata, NormalModel,
23 },
24 serde_default_fn,
25 utils::{progress::NiceProgressBar, unvarbuilder::UnVarBuilder},
26 AnyMoeConfig, AnyMoeExpertType,
27};
28
29serde_default_fn!(bool, word_emb_default, false);
30
31#[derive(Debug, Clone, serde::Deserialize, serde::Serialize, Default)]
32pub struct Config {
33 pub(crate) vocab_size: usize,
34 pub(crate) hidden_size: usize,
35 pub(crate) intermediate_size: usize,
36 pub(crate) num_hidden_layers: usize,
37 pub(crate) num_attention_heads: usize,
38 pub(crate) num_key_value_heads: usize,
39 pub(crate) hidden_act: Activation,
40 pub(crate) max_position_embeddings: usize,
41 pub(crate) norm_epsilon: f64,
42 pub(crate) rope_theta: f64,
43 pub(crate) use_bias: bool,
44 pub(crate) sliding_window: Option<usize>,
45 pub(crate) use_flash_attn: bool,
46 pub(crate) quantization_config: Option<QuantizedConfig>,
47 #[serde(default = "word_emb_default")]
48 #[allow(dead_code)]
49 pub(crate) tie_word_embeddings: bool,
50}
51
52#[derive(Clone)]
53#[allow(clippy::upper_case_acronyms)]
54struct MLP {
55 c_fc: Arc<dyn QuantMethod>,
56 c_proj: Arc<dyn QuantMethod>,
57 act: Activation,
58 params: Vec<usize>,
59}
60
61impl MLP {
62 fn new(cfg: &Config, vb: ShardedVarBuilder, comm: &Arc<mistralrs_quant::Comm>) -> Result<Self> {
63 let (h_size, i_size) = (cfg.hidden_size, cfg.intermediate_size);
64 let c_fc = ColumnParallelLayer::new(
65 h_size,
66 i_size,
67 &cfg.quantization_config,
68 cfg.use_bias,
69 comm,
70 vb.pp("c_fc"),
71 )?;
72 let c_proj = RowParallelLayer::new(
73 i_size,
74 h_size,
75 &cfg.quantization_config,
76 cfg.use_bias,
77 comm,
78 vb.pp("c_proj"),
79 )?;
80 Ok(Self {
81 c_fc,
82 c_proj,
83 act: cfg.hidden_act,
84 params: vec![h_size, i_size],
85 })
86 }
87}
88
89impl AnyMoeTrainableLayer for MLP {}
90
91impl MlpLayer for MLP {
92 fn forward(&self, xs: &Tensor) -> Result<Tensor> {
93 let original_dtype = xs.dtype();
94 let mut xs = xs.clone();
95 if let Some(t) = self.c_fc.quantized_act_type() {
96 xs = xs.to_dtype(t)?;
97 }
98 let mut res = MatMul.qmethod_matmul(
99 &MatMul.qmethod_matmul(&xs, &*self.c_fc)?.apply(&self.act)?,
100 &*self.c_proj,
101 )?;
102 if self.c_fc.quantized_act_type().is_some() {
103 res = res.to_dtype(original_dtype)?;
104 }
105 Ok(res)
106 }
107 fn get_isq_layers(&mut self) -> Vec<&mut Arc<dyn QuantMethod>> {
108 vec![&mut self.c_fc, &mut self.c_proj]
109 }
110 fn clone(&self) -> Box<dyn MlpLayer> {
111 Box::new(Clone::clone(self))
112 }
113 fn get_params(&self) -> &[usize] {
114 &self.params
115 }
116 fn hidden_act(&self) -> Activation {
117 self.act
118 }
119 fn new_added_delta(&self, deltas: Vec<Option<Tensor>>) -> Result<Box<dyn MlpLayer>> {
121 let new_c_fc = if let Some(ref delta) = deltas[0] {
122 self.c_fc.add_delta_w(delta)?
123 } else {
124 self.c_fc.clone()
125 };
126 let new_c_proj = if let Some(ref delta) = deltas[1] {
127 self.c_proj.add_delta_w(delta)?
128 } else {
129 self.c_proj.clone()
130 };
131
132 Ok(Box::new(Self {
133 c_fc: new_c_fc,
134 c_proj: new_c_proj,
135 act: self.act,
136 params: self.params.clone(),
137 }))
138 }
139
140 fn dtype_device(&self) -> (DType, Device) {
141 self.c_fc.dtype_and_device()
142 }
143}
144
145struct Attention {
146 q_proj: Arc<dyn QuantMethod>,
147 k_proj: Arc<dyn QuantMethod>,
148 v_proj: Arc<dyn QuantMethod>,
149 o_proj: Arc<dyn QuantMethod>,
150 num_heads: usize,
151 num_kv_heads: usize,
152 head_dim: usize,
153 rotary_emb: Arc<RotaryEmbedding>,
154 paged_attn: Option<PagedAttention>,
155 sdpa_params: SdpaParams,
156}
157
158impl Attention {
159 fn new(
160 rotary_emb: Arc<RotaryEmbedding>,
161 cfg: &Config,
162 vb: ShardedVarBuilder,
163 paged_attn: Option<PagedAttention>,
164 comm: &Arc<mistralrs_quant::Comm>,
165 ) -> Result<Self> {
166 let hidden_sz = cfg.hidden_size;
167 let num_heads = cfg.num_attention_heads;
168 let num_kv_heads = cfg.num_key_value_heads;
169 let head_dim = hidden_sz / num_heads;
170 let b = cfg.use_bias;
171 let q_proj = ColumnParallelLayer::new(
172 hidden_sz,
173 num_heads * head_dim,
174 &cfg.quantization_config,
175 b,
176 comm,
177 vb.pp("q_proj"),
178 )?;
179 let kv_shard = mistralrs_quant::compute_kv_shard(
180 cfg.num_key_value_heads,
181 cfg.hidden_size / cfg.num_attention_heads,
182 comm,
183 );
184 let k_proj = ColumnParallelLayer::new_with_shard(
185 hidden_sz,
186 num_kv_heads * head_dim,
187 &cfg.quantization_config,
188 b,
189 comm,
190 kv_shard,
191 vb.pp("k_proj"),
192 )?;
193 let v_proj = ColumnParallelLayer::new_with_shard(
194 hidden_sz,
195 num_kv_heads * head_dim,
196 &cfg.quantization_config,
197 b,
198 comm,
199 kv_shard,
200 vb.pp("v_proj"),
201 )?;
202 let o_proj = RowParallelLayer::new(
203 num_heads * head_dim,
204 hidden_sz,
205 &cfg.quantization_config,
206 b,
207 comm,
208 vb.pp("o_proj"),
209 )?;
210 Ok(Self {
211 q_proj,
212 k_proj,
213 v_proj,
214 o_proj,
215 num_heads: num_heads / comm.world_size(),
216 num_kv_heads: (num_kv_heads / comm.world_size()).max(1),
217 head_dim,
218 rotary_emb,
219 paged_attn,
220 sdpa_params: SdpaParams {
221 n_kv_groups: mistralrs_quant::compute_n_kv_groups(
222 cfg.num_key_value_heads,
223 cfg.num_attention_heads,
224 comm,
225 ),
226 use_flash_attn: cfg.use_flash_attn,
227 softcap: None,
228 softmax_scale: 1.0 / (head_dim as f32).sqrt(),
229 sliding_window: cfg.sliding_window,
230 },
231 })
232 }
233
234 #[allow(clippy::too_many_arguments)]
235 fn forward(
236 &self,
237 xs: &Tensor,
238 attention_mask: Option<&Tensor>,
239 seqlen_offsets: &[usize],
240 kv_cache: &mut KvCache,
241 metadata: Option<((Tensor, Tensor), &PagedAttentionInputMetadata)>,
242 flash_params: &FlashParams,
243 ) -> Result<Tensor> {
244 let (b_sz, q_len, _) = xs.dims3()?;
245
246 let original_dtype = xs.dtype();
247 let mut xs = xs.clone();
248 if let Some(t) = self.q_proj.quantized_act_type() {
249 xs = xs.to_dtype(t)?;
250 }
251 let mut q = MatMul.qmethod_matmul(&xs, &*self.q_proj)?;
252 let mut k = MatMul.qmethod_matmul(&xs, &*self.k_proj)?;
253 let mut v = MatMul.qmethod_matmul(&xs, &*self.v_proj)?;
254 if self.q_proj.quantized_act_type().is_some() {
255 q = q.to_dtype(original_dtype)?;
256 k = k.to_dtype(original_dtype)?;
257 v = v.to_dtype(original_dtype)?;
258 }
259
260 let (q, k, v) = if q_len != 1 {
261 let q = q
262 .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
263 .transpose(1, 2)?;
264 let k = k
265 .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
266 .transpose(1, 2)?;
267 let v = v
268 .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
269 .transpose(1, 2)?;
270 (q, k, v)
271 } else {
272 let q = q.reshape((b_sz, self.num_heads, q_len, self.head_dim))?;
273 let k = k.reshape((b_sz, self.num_kv_heads, q_len, self.head_dim))?;
274 let v = v.reshape((b_sz, self.num_kv_heads, q_len, self.head_dim))?;
275 (q, k, v)
276 };
277
278 let (q, k) = self.rotary_emb.forward(&q, &k, seqlen_offsets)?;
279
280 let mut attn_output = match &self.paged_attn {
281 Some(paged_attn) => match metadata {
282 Some(((key_cache, value_cache), input_metadata)) => paged_attn.forward(
283 &q,
284 &k,
285 &v,
286 attention_mask,
287 Some(key_cache),
288 Some(value_cache),
289 input_metadata,
290 &self.sdpa_params,
291 Some(flash_params),
292 )?,
293 None => {
294 let input_metadata = PagedAttentionInputMetadata::dummy(q.device())?;
297 assert!(attention_mask.is_some());
299 paged_attn.forward(
300 &q,
301 &k,
302 &v,
303 attention_mask,
304 None,
305 None,
306 &input_metadata,
307 &self.sdpa_params,
308 Some(flash_params),
309 )?
310 }
311 },
312 None => {
313 let (k, v) = kv_cache.append(&k, &v)?;
314
315 Sdpa.run_attention(
316 &q,
317 &k,
318 &v,
319 attention_mask,
320 Some(flash_params),
321 &self.sdpa_params,
322 )?
323 }
324 };
325
326 if let Some(t) = self.q_proj.quantized_act_type() {
327 attn_output = attn_output.to_dtype(t)?;
328 }
329 attn_output = if attention_mask.is_some() {
330 attn_output.transpose(1, 2)?.reshape((b_sz, q_len, ()))?
331 } else {
332 attn_output.reshape((b_sz, q_len, ()))?
333 };
334 let mut res = MatMul.qmethod_matmul(&attn_output, &*self.o_proj)?;
335 if self.q_proj.quantized_act_type().is_some() {
336 res = res.to_dtype(original_dtype)?;
337 }
338 Ok(res)
339 }
340}
341
342struct DecoderLayer {
343 self_attn: Attention,
344 mlp: Box<dyn MlpLayer>,
345 input_layernorm: LayerNorm,
346 post_attention_layernorm: LayerNorm,
347}
348
349impl DecoderLayer {
350 #[allow(clippy::too_many_arguments)]
351 fn new(
352 rotary_emb: Arc<RotaryEmbedding>,
353 cfg: &Config,
354 vb: ShardedVarBuilder,
355 mapper: &dyn DeviceMapper,
356 layer_idx: usize,
357 loading_isq: bool,
358 paged_attn: Option<PagedAttention>,
359 comm: &Arc<mistralrs_quant::Comm>,
360 ) -> Result<Self> {
361 let self_attn = Attention::new(
362 rotary_emb,
363 cfg,
364 mapper.set_device(layer_idx, vb.pp("self_attn"), loading_isq),
365 paged_attn,
366 comm,
367 )?;
368 let mlp = MLP::new(
369 cfg,
370 mapper.set_device(layer_idx, vb.pp("mlp"), loading_isq),
371 comm,
372 )?;
373 let input_layernorm = layer_norm(
374 cfg.hidden_size,
375 cfg.norm_epsilon,
376 mapper.set_device(layer_idx, vb.pp("input_layernorm"), false),
377 )?;
378 let post_attention_layernorm = layer_norm(
379 cfg.hidden_size,
380 cfg.norm_epsilon,
381 mapper.set_device(layer_idx, vb.pp("post_attention_layernorm"), false),
382 )?;
383 Ok(Self {
384 self_attn,
385 mlp: Box::new(mlp),
386 input_layernorm,
387 post_attention_layernorm,
388 })
389 }
390
391 #[allow(clippy::too_many_arguments)]
392 fn forward(
393 &self,
394 xs: &Tensor,
395 attention_mask: Option<&Tensor>,
396 seqlen_offsets: &[usize],
397 kv_cache: &mut KvCache,
398 metadata: Option<((Tensor, Tensor), &PagedAttentionInputMetadata)>,
399 flash_params: &FlashParams,
400 ) -> Result<Tensor> {
401 let residual = xs;
402 let xs = self.input_layernorm.forward(xs)?;
403 let xs = self.self_attn.forward(
404 &xs,
405 attention_mask,
406 seqlen_offsets,
407 kv_cache,
408 metadata,
409 flash_params,
410 )?;
411 let xs = (xs + residual)?;
412 let residual = &xs;
413 let xs = self
414 .mlp
415 .forward(&xs.apply(&self.post_attention_layernorm)?)?;
416 residual + xs
417 }
418}
419
420pub struct Model {
421 embed_tokens: candle_nn::Embedding,
422 layers: Vec<DecoderLayer>,
423 norm: LayerNorm,
424 lm_head: Arc<dyn QuantMethod>,
425 sliding_window: Option<usize>,
426 device: Device,
427 cache: EitherCache,
428 max_seq_len: usize,
429 mapper: Box<dyn DeviceMapper + Send + Sync>,
430 cfg: ModelConfigMetadata,
431}
432
433impl Model {
434 pub fn new(
435 cfg: &Config,
436 vb: ShardedVarBuilder,
437 is_gptx: bool,
438 normal_loading_metadata: NormalLoadingMetadata,
439 attention_mechanism: AttentionImplementation,
440 ) -> Result<Self> {
441 if let Some(ref quant_cfg) = &cfg.quantization_config {
442 tracing::info!(
443 "Using {} quantization: {}.",
444 quant_cfg.quant_method.to_string(),
445 quant_cfg.get_bits_name(&vb)
446 );
447 }
448 let mapper = normal_loading_metadata.mapper;
449 let vb_m = vb.pp("model");
450
451 let embed_tokens = embedding(
452 cfg.vocab_size,
453 cfg.hidden_size,
454 mapper.set_nm_device(vb_m.pp("embed_tokens"), false),
455 )?;
456 let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
457 let vb_l = vb_m.pp("layers");
458 let head_dim = cfg.hidden_size / cfg.num_attention_heads;
459
460 let mut ropes = HashMap::new();
461 for layer_idx in 0..cfg.num_hidden_layers {
462 let device = mapper
463 .device_for(layer_idx, false)
464 .unwrap_or(&normal_loading_metadata.real_device);
465 ropes.insert(
466 device.location(),
467 Arc::new(RotaryEmbedding::new(
468 cfg.rope_theta as f32,
469 head_dim,
470 cfg.max_position_embeddings,
471 device,
472 is_gptx,
473 vb_m.dtype(),
474 )?),
475 );
476 }
477
478 for layer_idx in NiceProgressBar::<_, 'b'>(
479 0..cfg.num_hidden_layers,
480 "Loading repeating layers",
481 &normal_loading_metadata.multi_progress,
482 ) {
483 let device = mapper
484 .device_for(layer_idx, false)
485 .unwrap_or(&normal_loading_metadata.real_device);
486 let rotary_emb = ropes
487 .get(&device.location())
488 .expect("No RoPE for device location!")
489 .clone();
490 let paged_attn = match &attention_mechanism {
491 AttentionImplementation::Eager => None,
492 AttentionImplementation::PagedAttention => {
493 Some(PagedAttention::new(head_dim, device, None)?)
494 }
495 };
496 let comm = mapper.get_comm_for(layer_idx)?;
497 layers.push(DecoderLayer::new(
498 rotary_emb.clone(),
499 cfg,
500 vb_l.pp(layer_idx),
501 &*mapper,
502 layer_idx,
503 normal_loading_metadata.loading_isq,
504 paged_attn,
505 &comm,
506 )?)
507 }
508 let norm = layer_norm(
509 cfg.hidden_size,
510 cfg.norm_epsilon,
511 mapper.set_nm_device(vb_m.pp("norm"), false),
512 )?;
513 let lm_head = mapper.cast_nm_device(
514 embed_tokens.embeddings(),
515 normal_loading_metadata.loading_isq,
516 )?;
517 Ok(Self {
518 embed_tokens,
519 layers,
520 norm,
521 lm_head: Arc::new(UnquantLinear::new(QuantMethodConfig::Unquantized(
522 Linear::new(lm_head, None),
523 ))?),
524 sliding_window: cfg.sliding_window,
525 device: normal_loading_metadata.real_device,
526 cache: EitherCache::Normal(NormalCache::new_sliding(
527 cfg.num_hidden_layers,
528 cfg.max_position_embeddings,
529 cfg.sliding_window,
530 )),
531 max_seq_len: cfg.max_position_embeddings,
532 cfg: ModelConfigMetadata {
533 max_seq_len: cfg.max_position_embeddings,
534 num_layers: cfg.num_hidden_layers,
535 hidden_size: cfg.hidden_size,
536 num_attn_heads: cfg.num_attention_heads / mapper.get_comm_for(0)?.world_size(),
537 num_kv_heads: (cfg.num_key_value_heads / mapper.get_comm_for(0)?.world_size())
538 .max(1),
539 sliding_window: cfg.sliding_window,
540 k_head_dim: cfg.hidden_size / cfg.num_attention_heads,
541 v_head_dim: cfg.hidden_size / cfg.num_attention_heads,
542 },
543 mapper,
544 })
545 }
546
547 pub fn forward(
548 &self,
549 input_ids: &Tensor,
550 seqlen_offsets: &[usize],
551 context_lens: Vec<(usize, usize)>,
552 metadata: Option<(Vec<(Tensor, Tensor)>, &PagedAttentionInputMetadata)>,
553 flash_params: &FlashParams,
554 ) -> Result<Tensor> {
555 let mut xs = self.embed_tokens.forward(input_ids)?;
556
557 let cache = &mut self.cache.normal().0;
558 let attention_mask = CausalMasker.make_sliding_window_causal_mask_matrix(
559 input_ids,
560 metadata
561 .as_ref()
562 .map(|(_, _)| &seqlen_offsets as &dyn PastKvLenCache)
563 .unwrap_or(cache as &dyn PastKvLenCache),
564 self.sliding_window,
565 xs.dtype(),
566 self.cfg.num_attn_heads,
567 )?;
568 let attention_mask = attention_mask.filter(|_| {
569 metadata
570 .as_ref()
571 .map(|(_, meta)| meta.is_first_prompt_chunk)
572 .unwrap_or(true)
573 });
574
575 for (i, layer) in self.layers.iter().enumerate() {
576 xs = self.mapper.map(xs, i)?;
577 xs = layer.forward(
578 &xs,
579 attention_mask
580 .as_ref()
581 .map(|m| m.to_device(xs.device()).unwrap())
582 .as_ref(),
583 seqlen_offsets,
584 &mut cache[i],
585 metadata
586 .as_ref()
587 .map(|(kv_cache, metadata)| (kv_cache[i].clone(), *metadata)),
588 flash_params,
589 )?
590 }
591 let mut xs = xs.to_device(&self.device)?.apply(&self.norm)?;
592 if let Some(t) = self.lm_head.quantized_act_type() {
593 xs = xs.to_dtype(t)?;
594 }
595 extract_logits(&MatMul.qmethod_matmul(&xs, &*self.lm_head)?, context_lens)
596 }
597}
598
599impl IsqModel for Model {
600 fn get_layers(
601 &mut self,
602 ) -> (
603 Vec<(&mut Arc<dyn QuantMethod>, Option<usize>)>,
604 &dyn DeviceMapper,
605 ) {
606 let mut tensors = Vec::new();
607 tensors.push((&mut self.lm_head, None));
608 for (i, layer) in self.layers.iter_mut().enumerate() {
609 tensors.push((&mut layer.self_attn.q_proj, Some(i)));
610 tensors.push((&mut layer.self_attn.k_proj, Some(i)));
611 tensors.push((&mut layer.self_attn.v_proj, Some(i)));
612 tensors.push((&mut layer.self_attn.o_proj, Some(i)));
613 tensors.extend(
614 layer
615 .mlp
616 .get_isq_layers()
617 .into_iter()
618 .map(|m| (m, Some(i)))
619 .collect::<Vec<_>>(),
620 );
621 }
622 (tensors, &*self.mapper)
623 }
624
625 fn residual_tensors(&self) -> Vec<(String, Tensor)> {
626 let uvb = UnVarBuilder::new();
627
628 let uvb_m = uvb.pp("model");
629 uvb_m.pp("embed_tokens").add(&self.embed_tokens);
630 uvb_m.pp("norm").add(&self.norm);
631
632 for (layer_idx, layer) in self.layers.iter().enumerate() {
633 let uvb_l = uvb_m.pp("layers").pp(layer_idx);
634 uvb_l.pp("input_layernorm").add(&layer.input_layernorm);
635 uvb_l
636 .pp("post_attention_layernorm")
637 .add(&layer.post_attention_layernorm);
638 }
639
640 uvb.to_safetensors()
641 }
642}
643
644impl NormalModel for Model {
645 fn forward(
646 &self,
647 input_ids: &Tensor,
648 seqlen_offsets: &[usize],
649 context_lens: Vec<(usize, usize)>,
650 _position_ids: Vec<usize>,
651 metadata: Option<(Vec<(Tensor, Tensor)>, &PagedAttentionInputMetadata)>,
652 flash_params: &FlashParams,
653 ) -> Result<Tensor> {
654 self.forward(
655 input_ids,
656 seqlen_offsets,
657 context_lens,
658 metadata,
659 flash_params,
660 )
661 }
662 fn xlora_forward(
663 &self,
664 _input_ids: &Tensor,
665 _input_ids_full: &Tensor,
666 _seqlen_offsets: &[usize],
667 _seqlen_offsets_full: &[usize],
668 _no_kv_cache: bool,
669 _non_granular_state: &Option<crate::xlora_models::NonGranularState>,
670 _context_lens: Vec<(usize, usize)>,
671 _position_ids: Vec<usize>,
672 _flash_params: &FlashParams,
673 _flash_params_full: &FlashParams,
674 ) -> Result<Tensor> {
675 unimplemented!()
676 }
677 fn cache(&self) -> &EitherCache {
678 &self.cache
679 }
680 fn cache_mut(&mut self) -> &mut EitherCache {
681 &mut self.cache
682 }
683 fn device(&self) -> &Device {
684 &self.device
685 }
686 fn is_xlora(&self) -> bool {
687 false
688 }
689 fn max_seq_len(&self) -> usize {
690 self.max_seq_len
691 }
692 fn config(&self) -> &ModelConfigMetadata {
693 &self.cfg
694 }
695}
696
697impl AnyMoeBaseModelMixin for Model {
698 fn get_mlps(&self) -> Vec<&dyn MlpLayer> {
699 let mut mlps = Vec::new();
700 for layer in &self.layers {
701 mlps.push(&*layer.mlp);
702 }
703 mlps
704 }
705 fn get_mlps_mut(&mut self) -> Vec<&mut Box<dyn MlpLayer>> {
706 let mut mlps = Vec::new();
707 for layer in &mut self.layers {
708 mlps.push(&mut layer.mlp);
709 }
710 mlps
711 }
712 fn create_anymoe_layers(
713 &mut self,
714 additional_vbs: Vec<ShardedVarBuilder>,
715 config: AnyMoeConfig,
716 (prefix, mlp): (String, String),
717 mut layers: Vec<usize>,
718 expert_type: AnyMoeExpertType,
719 gate_vb: Option<ShardedVarBuilder>,
720 ) -> Result<()> {
721 let mut experts: Vec<Vec<Box<dyn MlpLayer>>> = Vec::new();
722 if layers.is_empty() {
723 layers = (0..self.layers.len()).collect::<Vec<_>>();
724 }
725 for _ in 0..layers.len() {
726 experts.push(Vec::new());
727 }
728 for vb in additional_vbs {
729 let vb = vb.pp(&prefix);
730 for (layer, row) in experts.iter_mut().enumerate() {
731 if !layers.contains(&layer) {
732 continue;
733 }
734
735 let intermediate_size = self.layers[layer].mlp.get_params()[1];
736 let hidden_size = self.layers[layer].mlp.get_params()[0];
737 match expert_type {
738 AnyMoeExpertType::FineTuned => {
739 let (dtype, device) = self.layers[layer].mlp.dtype_device();
740 row.push(Box::new(MLP::new(
741 &Config {
742 intermediate_size: self.layers[layer].mlp.get_params()[1],
743 hidden_size: self.layers[layer].mlp.get_params()[0],
744 ..Default::default()
745 },
746 vb.pp(layer).pp(&mlp).set_dtype(dtype).set_device(device),
747 &self.mapper.get_comm_for(layer)?,
748 )?));
749 }
750 AnyMoeExpertType::LoraAdapter {
751 rank,
752 alpha,
753 ref target_modules,
754 } => {
755 let vb_mlp = vb.pp(layer).pp(&mlp);
756
757 let c_fc_delta = if target_modules.contains(&"c_fc".to_string()) {
758 Some(get_delta_from_lora_ab!(
759 vb_mlp,
760 rank,
761 alpha,
762 (hidden_size, intermediate_size),
763 "c_fc"
764 ))
765 } else {
766 None
767 };
768 let c_proj_delta = if target_modules.contains(&"c_proj".to_string()) {
769 Some(get_delta_from_lora_ab!(
770 vb_mlp,
771 rank,
772 alpha,
773 (intermediate_size, hidden_size),
774 "c_proj"
775 ))
776 } else {
777 None
778 };
779
780 row.push(
781 self.layers[layer]
782 .mlp
783 .new_added_delta(vec![c_fc_delta, c_proj_delta])?,
784 );
785 }
786 }
787 }
788 }
789 for (layer, expert) in layers.into_iter().zip(experts) {
790 let mut experts_all = vec![self.layers[layer].mlp.clone()];
791 experts_all.extend(expert);
792 let (dtype, device) = self.layers[layer].mlp.dtype_device();
793 self.layers[layer].mlp = Box::new(MoeMlp::new(
794 experts_all,
795 config.clone(),
796 dtype,
797 &device,
798 layer,
799 gate_vb.as_ref(),
800 )?);
801 }
802 Ok(())
803 }
804 fn amoe_supported(&self) -> bool {
805 true
806 }
807}