mistralrs_core/pipeline/
inputs_processor.rs

1#![allow(clippy::cast_possible_truncation)]
2
3use std::{any::Any, num::NonZeroUsize, sync::Arc};
4
5use anyhow::Result;
6use candle_core::Device;
7use text_models_inputs_processor::PagedAttentionMeta;
8use tokenizers::Tokenizer;
9
10use crate::{device_map::DeviceMapper, sequence::Sequence};
11
12pub const DEFAULT_PROMPT_CHUNK_SIZE: usize = 1024;
13
14#[derive(PartialEq)]
15pub enum InputsProcessorType {
16    Text,
17    Vision,
18}
19
20pub struct InputProcessorOutput {
21    pub inputs: Box<dyn Any>,
22    pub seq_indices: Vec<usize>,
23}
24
25/// Processor: Prepare inputs for the model (potentially preparing the images if applicable)
26pub trait InputsProcessor {
27    /// This should also enable matmul via f16 if prompt and the sequence length is greater than 32.
28    /// Otherwise, matmul via f16 is disabled.
29    ///
30    /// This should return a type which can be downcasted to the proper type as used in `forward_inputs`
31    #[allow(clippy::too_many_arguments)]
32    fn process_inputs(
33        &self,
34        tokenizer: Option<Arc<Tokenizer>>,
35        input_seqs: &mut [&mut Sequence],
36        is_prompt: bool,
37        is_xlora: bool,
38        device: &Device,
39        no_kv_cache: bool,
40        last_n_context_len: Option<(usize, usize)>,
41        return_raw_logits: bool,
42        other_config: Option<Arc<dyn Any>>,
43        paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
44        prompt_chunksize: Option<NonZeroUsize>,
45        mapper: Option<&dyn DeviceMapper>,
46    ) -> Box<dyn Iterator<Item = Result<InputProcessorOutput>>>;
47
48    fn get_type(&self) -> InputsProcessorType;
49}
50
51// ========================= Test models input processor
52
53pub mod text_models_inputs_processor {
54    use std::{any::Any, collections::HashMap, fmt::Debug, num::NonZeroUsize, sync::Arc};
55
56    use anyhow::Result;
57    use candle_core::{DType, Device, DeviceLocation, Tensor, WithDType};
58    use tokenizers::Tokenizer;
59
60    use crate::{
61        device_map::DeviceMapper,
62        paged_attention::{BlockEngine, _PAD_SLOT_ID},
63        sequence::Sequence,
64    };
65
66    use super::{InputProcessorOutput, InputsProcessor, InputsProcessorType};
67
68    fn _make_tensor_with_pad<D: WithDType>(
69        x: Vec<Vec<D>>,
70        max_len: usize,
71        pad: D,
72        device: &Device,
73    ) -> Result<Tensor> {
74        let mut padded_x = Vec::new();
75        for mut x_i in x {
76            assert!(x_i.len() <= max_len);
77            x_i.extend([pad].repeat(max_len - x_i.len()));
78            let shape = (x_i.len(),);
79            padded_x.push(Tensor::from_vec(x_i, shape, device)?);
80        }
81        Tensor::cat(&padded_x[..], 0).map_err(anyhow::Error::msg)
82    }
83
84    pub struct PagedAttentionMeta<'a> {
85        pub sliding_window: Option<usize>,
86        pub block_size: usize,
87        pub block_engine: &'a mut BlockEngine,
88    }
89
90    #[derive(Clone, Debug)]
91    #[allow(dead_code)]
92    pub struct PagedAttentionInputMetadata {
93        pub block_tables: Option<HashMap<DeviceLocation, Tensor>>,
94        pub context_lens: Option<HashMap<DeviceLocation, Tensor>>,
95        pub slot_mappings: HashMap<DeviceLocation, Tensor>,
96        pub max_context_len: Option<usize>,
97        pub is_first_prompt_chunk: bool,
98    }
99
100    impl PagedAttentionInputMetadata {
101        /// Create a dummy input metadata, assuming that this will NOT be used for decoding.
102        /// This is used for the case of imatrix generation.
103        pub fn dummy(dev: &Device) -> candle_core::Result<Self> {
104            Ok(PagedAttentionInputMetadata {
105                block_tables: None,
106                context_lens: None,
107                max_context_len: None,
108                slot_mappings: HashMap::from([(dev.location(), Tensor::new(&[0f32], dev)?)]),
109                is_first_prompt_chunk: true,
110            })
111        }
112    }
113
114    #[derive(Clone, Debug)]
115    pub struct FlashParams {
116        pub max_q: u32,
117        pub max_k: u32,
118        pub cumulative_seqlens_q: HashMap<DeviceLocation, Tensor>,
119        pub cumulative_seqlens_k: HashMap<DeviceLocation, Tensor>,
120    }
121
122    pub struct InputMetadata {
123        pub input: Tensor,
124        pub positions: Vec<usize>,
125        pub context_lens: Vec<(usize, usize)>, // (start index, len)
126        pub position_ids: Vec<usize>,
127        pub paged_attn_meta: Option<PagedAttentionInputMetadata>, // For paged attention
128        pub flash_meta: FlashParams,
129    }
130
131    pub struct InnerInputProcessorOutput {
132        pub inputs: InputMetadata,
133        pub seq_indices: Vec<usize>,
134    }
135
136    // chunk_offset_toks is the number of tokens by which the tokens are offset,
137    // chunk_offset_toks / prompt_chunksize = number of batches
138    #[allow(clippy::too_many_arguments)]
139    pub fn make_prompt_chunk<T: WithDType + Debug>(
140        chunk_offset_toks: usize,
141        toks: Vec<Vec<T>>,
142        seq_ids: &[usize],
143        device: &Device,
144        last_n_context_len: Option<(usize, usize)>,
145        return_raw_logits: bool,
146        mut paged_attn_metadata: Option<&mut PagedAttentionMeta<'_>>,
147        mapper: Option<&dyn DeviceMapper>,
148    ) -> Result<InputMetadata> {
149        let max_len = toks
150            .iter()
151            .map(|seq| seq.len())
152            .max()
153            .expect("No sequences");
154        let padding_tok = T::zero();
155        // Pad each sequence by the padding token to the max len.
156        let mut seqs_tensors = Vec::new();
157        let mut seqlen_offsets = Vec::new();
158        let mut context_lens = Vec::new();
159        let mut position_ids = Vec::new();
160        let mut slot_mappings = Vec::new();
161        let mut block_tables = Vec::new();
162        let mut paged_attn_context_lens = Vec::new();
163        let mut seqlens_q = vec![0];
164        let mut seqlens_k = vec![0];
165        for (seq_id, mut ctxt) in seq_ids.iter().zip(toks) {
166            let prompt_len = ctxt.len();
167            let offset = last_n_context_len.unwrap_or_default();
168            seqlen_offsets.push(offset.1 + chunk_offset_toks);
169
170            position_ids.push(ctxt.len() + chunk_offset_toks);
171            ctxt.extend(std::iter::repeat_n(
172                padding_tok,
173                max_len.saturating_sub(ctxt.len()),
174            ));
175            // If we are returning raw logits, we want to not trim the logits at all.
176            if return_raw_logits {
177                if last_n_context_len.is_some() {
178                    anyhow::bail!("`return_raw_logits` is incompatible with `last_n_context_len`");
179                }
180
181                context_lens.push((0, ctxt.len()));
182            } else {
183                context_lens.push((
184                    ctxt.len() - last_n_context_len.map(|(a, _)| a).unwrap_or(1),
185                    last_n_context_len.map(|(a, _)| a).unwrap_or(1),
186                ));
187            }
188
189            seqlens_q.push(ctxt.len() as u32);
190            seqlens_k.push((ctxt.len() + chunk_offset_toks) as u32);
191
192            seqs_tensors.push(Tensor::new(ctxt, device).unwrap().unsqueeze(0).unwrap());
193
194            if let Some(paged_attn_metadata) = &mut paged_attn_metadata {
195                let table = paged_attn_metadata.block_engine.block_tables.get(seq_id);
196
197                if table.is_none() {
198                    // Will be None during profiling.
199                    slot_mappings.push([_PAD_SLOT_ID].repeat(prompt_len));
200                    continue;
201                }
202                let table = table
203                    .unwrap()
204                    .iter()
205                    .map(|block| block.deref_mut().block_id)
206                    .collect::<Vec<_>>();
207
208                let start_idx = if let Some(sliding_window) = paged_attn_metadata.sliding_window {
209                    if prompt_len > sliding_window {
210                        chunk_offset_toks.min(prompt_len - sliding_window)
211                    } else {
212                        chunk_offset_toks
213                    }
214                } else {
215                    chunk_offset_toks
216                };
217
218                let mut slot_mapping = Vec::new();
219                let mut ctxt_len = Vec::new();
220                for i in chunk_offset_toks..prompt_len + chunk_offset_toks {
221                    if i < start_idx {
222                        // Pad [0,start_idx) with _PAD_TOKEN_ID
223                        slot_mapping.push(_PAD_SLOT_ID);
224                    }
225                    ctxt_len.push(i);
226
227                    let block_number = if i / paged_attn_metadata.block_size >= table.len() {
228                        panic!(
229                            "Block table is too small (prompt)! i={} block_size={} table_len={}",
230                            i,
231                            paged_attn_metadata.block_size,
232                            table.len()
233                        );
234                    } else {
235                        table.get(i / paged_attn_metadata.block_size).unwrap()
236                    };
237                    let block_offset = i % paged_attn_metadata.block_size;
238                    let slot = block_number * paged_attn_metadata.block_size + block_offset;
239                    slot_mapping.push(slot.try_into().unwrap());
240                    block_tables.push(table.clone());
241                }
242                slot_mappings.push(slot_mapping);
243                paged_attn_context_lens.push(ctxt_len);
244            }
245        }
246
247        let max_q = *seqlens_q.iter().max().unwrap();
248        let max_k = *seqlens_k.iter().max().unwrap();
249        let seqlens_q = Tensor::new(seqlens_q, device)?
250            .to_dtype(DType::F32)?
251            .cumsum(0)?
252            .to_dtype(DType::U32)?;
253        let seqlens_k = Tensor::new(seqlens_k, device)?
254            .to_dtype(DType::F32)?
255            .cumsum(0)?
256            .to_dtype(DType::U32)?;
257
258        let mut seqlens_q_map = HashMap::new();
259        let mut seqlens_k_map = HashMap::new();
260
261        let devices = mapper.unwrap().get_unique_devices();
262        for device in devices {
263            seqlens_q_map.insert(device.location(), seqlens_q.to_device(&device)?);
264            seqlens_k_map.insert(device.location(), seqlens_k.to_device(&device)?);
265        }
266
267        let input = Tensor::cat(&seqs_tensors, 0).unwrap();
268
269        let paged_attn_meta = if paged_attn_metadata.is_some() {
270            let max_slot_mapping_len = slot_mappings.iter().map(|x| x.len()).max().unwrap();
271            let slot_mappings =
272                _make_tensor_with_pad(slot_mappings, max_slot_mapping_len, _PAD_SLOT_ID, device)?;
273
274            let max_block_table_len = block_tables.iter().map(|x| x.len()).max().unwrap();
275            let block_tables = _make_tensor_with_pad(
276                block_tables
277                    .iter()
278                    .map(|x| x.iter().map(|x| *x as u32).collect::<Vec<_>>())
279                    .collect::<Vec<_>>(),
280                max_block_table_len,
281                0,
282                device,
283            )?;
284            let block_tables = block_tables.reshape(((), max_block_table_len))?;
285
286            let max_context_len = paged_attn_context_lens
287                .iter()
288                .map(|x| x.len())
289                .max()
290                .unwrap();
291
292            let context_lens = _make_tensor_with_pad(
293                paged_attn_context_lens
294                    .iter()
295                    .map(|x| x.iter().map(|x| *x as u32).collect::<Vec<_>>())
296                    .collect::<Vec<_>>(),
297                max_context_len,
298                0,
299                device,
300            )?
301            .reshape(((),))?;
302
303            // For device mapping, make a copy of each tensor for each device
304            let devices = mapper.unwrap().get_unique_devices();
305            let mut slot_mappings_map = HashMap::new();
306            let mut block_tables_map = HashMap::new();
307            let mut context_lens_map = HashMap::new();
308
309            for device in devices {
310                slot_mappings_map
311                    .insert(device.location(), slot_mappings.clone().to_device(&device)?);
312                block_tables_map
313                    .insert(device.location(), block_tables.clone().to_device(&device)?);
314                context_lens_map
315                    .insert(device.location(), context_lens.clone().to_device(&device)?);
316            }
317
318            Some(PagedAttentionInputMetadata {
319                slot_mappings: slot_mappings_map,
320                block_tables: Some(block_tables_map),
321                context_lens: Some(context_lens_map),
322                max_context_len: Some(max_context_len),
323                is_first_prompt_chunk: chunk_offset_toks == 0,
324            })
325        } else {
326            None
327        };
328
329        Ok(InputMetadata {
330            input,
331            positions: seqlen_offsets,
332            context_lens,
333            position_ids,
334            paged_attn_meta,
335            flash_meta: FlashParams {
336                max_k,
337                max_q,
338                cumulative_seqlens_k: seqlens_k_map,
339                cumulative_seqlens_q: seqlens_q_map,
340            },
341        })
342    }
343
344    fn make_completion_chunk<T: WithDType>(
345        toks: Vec<Vec<T>>,
346        input_seqs: &[&mut Sequence],
347        device: &Device,
348        mut paged_attn_metadata: Option<&mut PagedAttentionMeta<'_>>,
349        mapper: Option<&dyn DeviceMapper>,
350    ) -> Result<InputMetadata> {
351        // Pad each sequence by the padding token to the max len.
352        let mut seqs_tensors = Vec::new();
353        let mut seqlen_offsets = Vec::new();
354        let mut context_lens = Vec::new();
355        let mut position_ids = Vec::new();
356
357        let mut slot_mappings = Vec::new();
358        let mut block_tables = Vec::new();
359        let mut paged_attn_context_lens = Vec::new();
360        let mut seqlens_q = vec![0];
361        let mut seqlens_k = vec![0];
362        for (seq, ctxt) in input_seqs.iter().zip(toks) {
363            let start_pos = ctxt.len().saturating_sub(1);
364            let ctxt = ctxt[start_pos..].to_vec();
365            seqlen_offsets.push(start_pos);
366            context_lens.push((0, 1));
367            position_ids.push(seq.len());
368
369            seqlens_q.push(ctxt.len() as u32);
370            seqlens_k.push((ctxt.len() + start_pos) as u32);
371
372            seqs_tensors.push(Tensor::new(ctxt, device).unwrap().unsqueeze(0).unwrap());
373
374            if let Some(paged_attn_metadata) = &mut paged_attn_metadata {
375                let table = paged_attn_metadata
376                    .block_engine
377                    .block_tables
378                    .get(seq.id())
379                    .unwrap();
380
381                let table = table
382                    .iter()
383                    .map(|block| block.deref_mut().block_id)
384                    .collect::<Vec<_>>();
385
386                let block_number = if start_pos / paged_attn_metadata.block_size >= table.len() {
387                    panic!("Block table is too small (completion)! start_pos={} block_size={} table_len={}", start_pos, paged_attn_metadata.block_size, table.len());
388                } else {
389                    table
390                        .get(start_pos / paged_attn_metadata.block_size)
391                        .unwrap()
392                };
393                let block_offset = start_pos % paged_attn_metadata.block_size;
394                let slot = block_number * paged_attn_metadata.block_size + block_offset;
395                let slot = slot.try_into().unwrap();
396                slot_mappings.push(vec![slot]);
397
398                if let Some(sliding_window) = paged_attn_metadata.sliding_window {
399                    let sliding_window_blocks = sliding_window / paged_attn_metadata.block_size;
400                    let slide_idx = if table.len() > sliding_window_blocks {
401                        table.len() - sliding_window_blocks
402                    } else {
403                        0
404                    };
405                    block_tables.push(table.get(slide_idx..).unwrap().to_vec());
406                } else {
407                    block_tables.push(table);
408                }
409
410                let paged_attn_context_len =
411                    if let Some(sliding_window) = paged_attn_metadata.sliding_window {
412                        seq.len().min(sliding_window)
413                    } else {
414                        seq.len()
415                    };
416                paged_attn_context_lens.push(paged_attn_context_len);
417            }
418        }
419
420        let max_q = *seqlens_q.iter().max().unwrap();
421        let max_k = *seqlens_k.iter().max().unwrap();
422        let seqlens_q = Tensor::new(seqlens_q, device)?
423            .to_dtype(DType::F32)?
424            .cumsum(0)?
425            .to_dtype(DType::U32)?;
426        let seqlens_k = Tensor::new(seqlens_k, device)?
427            .to_dtype(DType::F32)?
428            .cumsum(0)?
429            .to_dtype(DType::U32)?;
430
431        let mut seqlens_q_map = HashMap::new();
432        let mut seqlens_k_map = HashMap::new();
433
434        let devices = mapper.unwrap().get_unique_devices();
435        for device in devices {
436            seqlens_q_map.insert(device.location(), seqlens_q.to_device(&device)?);
437            seqlens_k_map.insert(device.location(), seqlens_k.to_device(&device)?);
438        }
439
440        let paged_attn_meta = if paged_attn_metadata.is_some() {
441            let slot_mappings = _make_tensor_with_pad(slot_mappings, 1, _PAD_SLOT_ID, device)?;
442
443            let max_block_table_len = block_tables.iter().map(|x| x.len()).max().unwrap();
444
445            let block_tables = _make_tensor_with_pad(
446                block_tables
447                    .iter()
448                    .map(|x| x.iter().map(|x| *x as u32).collect::<Vec<_>>())
449                    .collect::<Vec<_>>(),
450                max_block_table_len,
451                0,
452                device,
453            )?;
454            let block_tables = block_tables.reshape(((), max_block_table_len))?;
455
456            let max_context_len = paged_attn_context_lens.iter().max().unwrap();
457
458            let context_lens = Tensor::from_vec(
459                paged_attn_context_lens
460                    .iter()
461                    .map(|x| *x as u32)
462                    .collect::<Vec<_>>(),
463                (paged_attn_context_lens.len(),),
464                device,
465            )?;
466
467            // For device mapping, make a copy of each tensor for each device
468            let devices = mapper.unwrap().get_unique_devices();
469            let mut slot_mappings_map = HashMap::new();
470            let mut block_tables_map = HashMap::new();
471            let mut context_lens_map = HashMap::new();
472
473            for device in devices {
474                slot_mappings_map
475                    .insert(device.location(), slot_mappings.clone().to_device(&device)?);
476                block_tables_map
477                    .insert(device.location(), block_tables.clone().to_device(&device)?);
478                context_lens_map
479                    .insert(device.location(), context_lens.clone().to_device(&device)?);
480            }
481
482            Some(PagedAttentionInputMetadata {
483                slot_mappings: slot_mappings_map,
484                block_tables: Some(block_tables_map),
485                context_lens: Some(context_lens_map),
486                max_context_len: Some(*max_context_len),
487                is_first_prompt_chunk: false,
488            })
489        } else {
490            None
491        };
492
493        Ok(InputMetadata {
494            input: Tensor::cat(&seqs_tensors, 0).unwrap(),
495            positions: seqlen_offsets,
496            context_lens,
497            position_ids,
498            paged_attn_meta,
499            flash_meta: FlashParams {
500                max_k,
501                max_q,
502                cumulative_seqlens_k: seqlens_k_map,
503                cumulative_seqlens_q: seqlens_q_map,
504            },
505        })
506    }
507
508    #[allow(clippy::too_many_arguments)]
509    pub(crate) fn get_prompt_input<T: WithDType + std::fmt::Debug>(
510        toks: Vec<Vec<T>>,
511        input_seqs: &[&mut Sequence],
512        device: &Device,
513        last_n_context_len: Option<(usize, usize)>,
514        return_raw_logits: bool,
515        mut paged_attn_metadata: Option<&mut PagedAttentionMeta<'_>>,
516        prompt_chunksize: Option<NonZeroUsize>,
517        mapper: Option<&dyn DeviceMapper>,
518    ) -> Box<dyn Iterator<Item = Result<InnerInputProcessorOutput>>> {
519        if let (Some(prompt_chunksize), true) = (prompt_chunksize, paged_attn_metadata.is_none()) {
520            let mut seq_chunks = Vec::new();
521            let mut n_chunks = Vec::new();
522            let prompt_chunksize: usize = prompt_chunksize.into();
523
524            // This comes from prefix caching
525            // The invariant where all token offsets are the same is handled by the scheduler
526            let offset = input_seqs[0].token_offset();
527
528            // Pad each sequence by the padding token to the max len.
529            for ctxt in toks.iter() {
530                let chunks = ctxt.chunks(prompt_chunksize).collect::<Vec<_>>();
531                n_chunks.push(chunks.len());
532                seq_chunks.push(chunks);
533            }
534            // Basically convert the sequences and tok chunks into chunks of seqs and the corresp toks
535            let mut chunks_transposed: Vec<Vec<(Vec<T>, usize)>> = Vec::new();
536            for (seq_n, seq) in seq_chunks.into_iter().enumerate() {
537                for (i, chunk) in seq.into_iter().enumerate() {
538                    match chunks_transposed.get_mut(i) {
539                        Some(part) => part.push((chunk.to_vec(), seq_n)),
540                        None => chunks_transposed.push(vec![(chunk.to_vec(), seq_n)]),
541                    }
542                }
543            }
544            let chunks = chunks_transposed
545                .into_iter()
546                .enumerate()
547                .map(|(i, chunk)| {
548                    let (toks, seq_ns): (Vec<Vec<T>>, Vec<usize>) = chunk.into_iter().unzip();
549                    make_prompt_chunk(
550                        i * prompt_chunksize + offset,
551                        toks,
552                        &seq_ns
553                            .iter()
554                            .map(|i| *input_seqs[*i].id())
555                            .collect::<Vec<_>>(),
556                        device,
557                        last_n_context_len,
558                        return_raw_logits,
559                        paged_attn_metadata.as_deref_mut(),
560                        mapper,
561                    )
562                    .map(|inputs| InnerInputProcessorOutput {
563                        inputs,
564                        seq_indices: seq_ns,
565                    })
566                })
567                .collect::<Vec<_>>();
568            Box::new(chunks.into_iter())
569        } else {
570            let offset = input_seqs[0].token_offset();
571            if offset != 0 && paged_attn_metadata.is_some() {
572                return Box::new(std::iter::once(Err(anyhow::Error::msg(
573                    "PagedAttention does not yet support sequences with an offset != 0.",
574                ))));
575            }
576            Box::new(std::iter::once(
577                make_prompt_chunk(
578                    offset,
579                    toks,
580                    &input_seqs.iter().map(|s| *s.id()).collect::<Vec<_>>(),
581                    device,
582                    last_n_context_len,
583                    return_raw_logits,
584                    paged_attn_metadata,
585                    mapper,
586                )
587                .map(|inputs| InnerInputProcessorOutput {
588                    inputs,
589                    seq_indices: (0..input_seqs.len()).collect(),
590                }),
591            ))
592        }
593    }
594
595    #[allow(clippy::too_many_arguments)]
596    pub(crate) fn get_completion_input<T: WithDType + std::fmt::Debug>(
597        toks: Vec<Vec<T>>,
598        input_seqs: &[&mut Sequence],
599        device: &Device,
600        no_kv_cache: bool,
601        last_n_context_len: Option<(usize, usize)>,
602        return_raw_logits: bool,
603        paged_attn_metadata: Option<&mut PagedAttentionMeta<'_>>,
604        prompt_chunksize: Option<NonZeroUsize>,
605        mapper: Option<&dyn DeviceMapper>,
606    ) -> Box<dyn Iterator<Item = Result<InnerInputProcessorOutput>>> {
607        if no_kv_cache {
608            return get_prompt_input(
609                toks,
610                input_seqs,
611                device,
612                last_n_context_len,
613                return_raw_logits,
614                paged_attn_metadata,
615                prompt_chunksize,
616                mapper,
617            );
618        }
619
620        Box::new(std::iter::once(
621            make_completion_chunk(toks, input_seqs, device, paged_attn_metadata, mapper).map(
622                |inputs| InnerInputProcessorOutput {
623                    inputs,
624                    seq_indices: (0..input_seqs.len()).collect(),
625                },
626            ),
627        ))
628    }
629
630    #[derive(Clone)]
631    pub struct ModelInputs {
632        pub input_ids: Tensor,
633        pub input_ids_full: Option<Tensor>,
634        pub seqlen_offsets: Vec<usize>,
635        pub seqlen_offsets_full: Option<Vec<usize>>,
636        pub context_lens: Vec<(usize, usize)>,
637        pub position_ids: Vec<usize>,
638        pub paged_attn_meta: Option<PagedAttentionInputMetadata>,
639        pub flash_meta: FlashParams,
640        pub flash_meta_full: Option<FlashParams>,
641    }
642
643    pub struct TextInputsProcessor;
644
645    impl InputsProcessor for TextInputsProcessor {
646        fn process_inputs(
647            &self,
648            _: Option<Arc<Tokenizer>>,
649            input_seqs: &mut [&mut Sequence],
650            is_prompt: bool,
651            is_xlora: bool,
652            device: &Device,
653            no_kv_cache: bool,
654            last_n_context_len: Option<(usize, usize)>,
655            return_raw_logits: bool,
656            _: Option<Arc<dyn Any>>,
657            mut paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
658            prompt_chunksize: Option<NonZeroUsize>,
659            mapper: Option<&dyn DeviceMapper>,
660        ) -> Box<dyn Iterator<Item = Result<InputProcessorOutput>>> {
661            if is_xlora && !is_prompt {
662                Box::new(
663                    get_prompt_input(
664                        input_seqs
665                            .iter()
666                            .map(|seq| seq.get_toks().to_vec())
667                            .collect::<Vec<_>>(),
668                        input_seqs,
669                        device,
670                        last_n_context_len,
671                        return_raw_logits,
672                        paged_attn_metadata.as_mut(),
673                        prompt_chunksize,
674                        mapper,
675                    )
676                    .zip(get_completion_input(
677                        input_seqs
678                            .iter()
679                            .map(|seq| seq.get_toks().to_vec())
680                            .collect::<Vec<_>>(),
681                        input_seqs,
682                        device,
683                        no_kv_cache,
684                        last_n_context_len,
685                        return_raw_logits,
686                        paged_attn_metadata.as_mut(),
687                        prompt_chunksize,
688                        mapper,
689                    ))
690                    .map(|(prompt, completion)| {
691                        let InnerInputProcessorOutput {
692                            inputs:
693                                InputMetadata {
694                                    input: input_ids_full,
695                                    positions: seqlen_offsets_full,
696                                    context_lens: _,
697                                    position_ids,
698                                    paged_attn_meta: _,
699                                    flash_meta: flash_meta_full,
700                                },
701                            seq_indices,
702                        } = prompt?;
703                        let InnerInputProcessorOutput {
704                            inputs:
705                                InputMetadata {
706                                    input: input_ids,
707                                    positions: seqlen_offsets,
708                                    context_lens,
709                                    position_ids: _,
710                                    paged_attn_meta,
711                                    flash_meta,
712                                },
713                            seq_indices: _,
714                        } = completion?;
715                        let inputs: Box<dyn Any> = Box::new(ModelInputs {
716                            input_ids,
717                            input_ids_full: Some(input_ids_full),
718                            seqlen_offsets,
719                            seqlen_offsets_full: Some(seqlen_offsets_full),
720                            context_lens,
721                            position_ids,
722                            paged_attn_meta,
723                            flash_meta,
724                            flash_meta_full: Some(flash_meta_full),
725                        });
726                        Ok(InputProcessorOutput {
727                            inputs,
728                            seq_indices,
729                        })
730                    }),
731                )
732            } else if is_xlora && is_prompt {
733                Box::new(
734                    get_prompt_input(
735                        input_seqs
736                            .iter()
737                            .map(|seq| seq.get_toks().to_vec())
738                            .collect::<Vec<_>>(),
739                        input_seqs,
740                        device,
741                        last_n_context_len,
742                        return_raw_logits,
743                        paged_attn_metadata.as_mut(),
744                        prompt_chunksize,
745                        mapper,
746                    )
747                    .map(|metadata| {
748                        let InnerInputProcessorOutput {
749                            inputs:
750                                InputMetadata {
751                                    input: input_ids,
752                                    positions: seqlen_offsets,
753                                    context_lens,
754                                    position_ids,
755                                    paged_attn_meta,
756                                    flash_meta,
757                                },
758                            seq_indices,
759                        } = metadata?;
760                        let inputs: Box<dyn Any> = Box::new(ModelInputs {
761                            input_ids: input_ids.clone(),
762                            input_ids_full: Some(input_ids),
763                            seqlen_offsets: seqlen_offsets.clone(),
764                            seqlen_offsets_full: Some(seqlen_offsets),
765                            context_lens,
766                            position_ids,
767                            paged_attn_meta,
768                            flash_meta: flash_meta.clone(),
769                            flash_meta_full: Some(flash_meta),
770                        });
771                        Ok(InputProcessorOutput {
772                            inputs,
773                            seq_indices,
774                        })
775                    }),
776                )
777            } else if is_prompt {
778                Box::new(
779                    get_prompt_input(
780                        input_seqs
781                            .iter()
782                            .map(|seq| seq.get_toks().to_vec())
783                            .collect::<Vec<_>>(),
784                        input_seqs,
785                        device,
786                        last_n_context_len,
787                        return_raw_logits,
788                        paged_attn_metadata.as_mut(),
789                        prompt_chunksize,
790                        mapper,
791                    )
792                    .map(|metadata| {
793                        let InnerInputProcessorOutput {
794                            inputs:
795                                InputMetadata {
796                                    input: input_ids,
797                                    positions: seqlen_offsets,
798                                    context_lens,
799                                    position_ids,
800                                    paged_attn_meta,
801                                    flash_meta,
802                                },
803                            seq_indices,
804                        } = metadata?;
805                        let inputs: Box<dyn Any> = Box::new(ModelInputs {
806                            input_ids,
807                            input_ids_full: None,
808                            seqlen_offsets,
809                            seqlen_offsets_full: None,
810                            context_lens,
811                            position_ids,
812                            paged_attn_meta,
813                            flash_meta,
814                            flash_meta_full: None,
815                        });
816                        Ok(InputProcessorOutput {
817                            inputs,
818                            seq_indices,
819                        })
820                    }),
821                )
822            } else {
823                Box::new(
824                    get_completion_input(
825                        input_seqs
826                            .iter()
827                            .map(|seq| seq.get_toks().to_vec())
828                            .collect::<Vec<_>>(),
829                        input_seqs,
830                        device,
831                        no_kv_cache,
832                        last_n_context_len,
833                        return_raw_logits,
834                        paged_attn_metadata.as_mut(),
835                        prompt_chunksize,
836                        mapper,
837                    )
838                    .map(|metadata| {
839                        let InnerInputProcessorOutput {
840                            inputs:
841                                InputMetadata {
842                                    input: input_ids,
843                                    positions: seqlen_offsets,
844                                    context_lens,
845                                    position_ids,
846                                    paged_attn_meta,
847                                    flash_meta,
848                                },
849                            seq_indices,
850                        } = metadata?;
851                        let inputs: Box<dyn Any> = Box::new(ModelInputs {
852                            input_ids,
853                            input_ids_full: None,
854                            seqlen_offsets,
855                            seqlen_offsets_full: None,
856                            context_lens,
857                            position_ids,
858                            paged_attn_meta,
859                            flash_meta,
860                            flash_meta_full: None,
861                        });
862                        Ok(InputProcessorOutput {
863                            inputs,
864                            seq_indices,
865                        })
866                    }),
867                )
868            }
869        }
870
871        fn get_type(&self) -> InputsProcessorType {
872            InputsProcessorType::Text
873        }
874    }
875}