1use super::isq::ImatrixDataSource;
2use super::isq::UqffFullSer;
3use super::{
4 get_model_paths, get_xlora_paths, AdapterKind, AnyMoePipelineMixin, AutoVisionLoader,
5 CacheManager, CacheManagerMixin, EitherCache, ForwardInputsResult, Gemma3Loader,
6 GeneralMetadata, IsqPipelineMixin, Loader, MetadataMixin, MiniCpmOLoader, ModelCategory,
7 ModelKind, ModelPaths, MultimodalPromptPrefixer, Phi4MMLoader, PreProcessingMixin, Processor,
8 Qwen2VLLoader, Qwen3VLLoader, Qwen3VLMoELoader, TokenSource, VLlama4Loader, VLlamaLoader,
9 VisionModel, VisionModelLoader,
10};
11use super::{
12 Gemma3nLoader, Idefics2Loader, Idefics3Loader, LLaVALoader, LLaVANextLoader, Mistral3Loader,
13 Phi3VLoader, Qwen2_5VLLoader, VisionLoaderType,
14};
15use crate::attention::ATTENTION_CHUNK_SIZE;
16use crate::device_map::{self, DeviceMapper};
17use crate::distributed::{self, WorkerTransferData};
18use crate::kv_cache::{FullCacheManager, NormalCacheManager};
19use crate::paged_attention::{calculate_cache_config, AttentionImplementation, CacheEngine};
20use crate::pipeline::chat_template::{calculate_eos_tokens, GenerationConfig};
21use crate::pipeline::llg::build_llg_factory;
22use crate::pipeline::loaders::auto_device_map;
23use crate::pipeline::loaders::QuantizationConfigShim;
24use crate::pipeline::sampling::sample_and_add_toks;
25use crate::pipeline::text_models_inputs_processor::make_prompt_chunk;
26use crate::pipeline::{get_chat_template, ChatTemplate, IsqOrganization, LocalModelPaths};
27use crate::prefix_cacher::PrefixCacheManagerV2;
28use crate::sequence::Sequence;
29use crate::utils::tokenizer::get_tokenizer;
30use crate::utils::varbuilder_utils::DeviceForLoadTensor;
31use crate::utils::{
32 progress::{new_multi_progress, ProgressScopeGuard},
33 tokens::get_token,
34 varbuilder_utils::from_mmaped_safetensors,
35};
36use crate::vision_models::preprocessor_config::PreProcessorConfig;
37use crate::vision_models::processor_config::ProcessorConfig;
38use crate::vision_models::ModelInputs;
39use crate::{
40 api_dir_list, api_get_file, get_paths, get_uqff_paths, vision_normal_model_loader,
41 vision_normal_model_loader_sharded, AnyMoeExpertType, DeviceMapSetting, Ordering,
42 PagedAttentionConfig, Pipeline, Topology, TryIntoDType, GLOBAL_HF_CACHE,
43};
44use anyhow::Result;
45use candle_core::{Device, Tensor, Var};
46use hf_hub::Cache;
47use hf_hub::{api::sync::ApiBuilder, Repo, RepoType};
48use mistralrs_quant::log::once_log_info;
49use mistralrs_quant::{
50 AfqLayer, GgufMatMul, HqqLayer, ImmediateIsqOverride, IsqType, QuantizedSerdeType,
51};
52use rand_isaac::Isaac64Rng;
53use regex_automata::meta::Regex;
54use std::any::Any;
55use std::borrow::Cow;
56use std::path::{Path, PathBuf};
57use std::str::FromStr;
58use std::sync::{Arc, RwLock};
59use std::time::Instant;
60use std::{env, fs};
61use tokenizers::Tokenizer;
62use tokio::sync::Mutex;
63use tracing::{info, warn};
64
65pub struct VisionPipeline {
66 model: Box<dyn VisionModel + Send + Sync>,
67 tokenizer: Arc<Tokenizer>,
68 chat_template: Arc<ChatTemplate>,
69 model_id: String,
70 metadata: Arc<GeneralMetadata>,
71 processor: Arc<dyn Processor + Send + Sync>,
72 preprocessor_config: Arc<PreProcessorConfig>,
73 topology: Option<Topology>,
74 silent: bool,
75 prefixer: Arc<dyn MultimodalPromptPrefixer>,
76 mapper: Box<dyn DeviceMapper + Send + Sync>,
77
78 template_filename: Option<PathBuf>,
80 generation_config: Option<PathBuf>,
81 config: String,
82 processor_filename: Option<PathBuf>,
83 preprocessor_filename: Option<PathBuf>,
84 imatrix: Option<PathBuf>,
85}
86
87pub struct VisionLoader {
89 inner: Box<dyn VisionModelLoader>,
90 model_id: String,
91 config: VisionSpecificConfig,
92 kind: ModelKind,
93 chat_template: Option<String>,
94 tokenizer_json: Option<String>,
95 xlora_model_id: Option<String>,
96 xlora_order: Option<Ordering>,
97 token_source: RwLock<Option<TokenSource>>,
98 revision: RwLock<Option<String>>,
99 from_uqff: RwLock<Option<Vec<PathBuf>>>,
100 jinja_explicit: Option<String>,
101 hf_cache_path: Option<PathBuf>,
102 lora_adapter_ids: Option<Vec<String>>,
103}
104
105#[derive(Default)]
106pub struct VisionLoaderBuilder {
108 model_id: Option<String>,
109 config: VisionSpecificConfig,
110 kind: ModelKind,
111 chat_template: Option<String>,
112 tokenizer_json: Option<String>,
113 jinja_explicit: Option<String>,
114 hf_cache_path: Option<PathBuf>,
115 lora_adapter_ids: Option<Vec<String>>,
116}
117
118#[derive(Clone, Default)]
119pub struct VisionSpecificConfig {
121 pub topology: Option<Topology>,
122 pub write_uqff: Option<PathBuf>,
123 pub from_uqff: Option<Vec<PathBuf>>,
124 pub max_edge: Option<u32>,
125 pub imatrix: Option<PathBuf>,
126 pub calibration_file: Option<PathBuf>,
127 pub hf_cache_path: Option<PathBuf>,
128 pub matformer_config_path: Option<PathBuf>,
129 pub matformer_slice_name: Option<String>,
130}
131
132impl VisionLoaderBuilder {
133 pub fn new(
134 config: VisionSpecificConfig,
135 chat_template: Option<String>,
136 tokenizer_json: Option<String>,
137 model_id: Option<String>,
138 jinja_explicit: Option<String>,
139 ) -> Self {
140 Self {
141 config,
142 chat_template,
143 tokenizer_json,
144 model_id,
145 jinja_explicit,
146 kind: ModelKind::Normal,
147 hf_cache_path: None,
148 ..Default::default()
149 }
150 }
151
152 pub fn hf_cache_path(mut self, hf_cache_path: PathBuf) -> Self {
153 self.hf_cache_path = Some(hf_cache_path);
154 self
155 }
156
157 pub fn with_lora(mut self, lora_adapter_ids: Vec<String>) -> Self {
158 self.kind = ModelKind::Adapter {
159 adapter: AdapterKind::Lora,
160 };
161 self.lora_adapter_ids = Some(lora_adapter_ids);
162 self
163 }
164
165 pub fn build(self, loader: Option<VisionLoaderType>) -> Box<dyn Loader> {
166 let loader: Box<dyn VisionModelLoader> = match loader {
167 Some(VisionLoaderType::Phi3V) => Box::new(Phi3VLoader),
168 Some(VisionLoaderType::Idefics2) => Box::new(Idefics2Loader),
169 Some(VisionLoaderType::LLaVANext) => Box::new(LLaVANextLoader),
170 Some(VisionLoaderType::LLaVA) => Box::new(LLaVALoader),
171 Some(VisionLoaderType::VLlama) => Box::new(VLlamaLoader),
172 Some(VisionLoaderType::Qwen2VL) => Box::new(Qwen2VLLoader),
173 Some(VisionLoaderType::Idefics3) => Box::new(Idefics3Loader),
174 Some(VisionLoaderType::MiniCpmO) => Box::new(MiniCpmOLoader),
175 Some(VisionLoaderType::Phi4MM) => Box::new(Phi4MMLoader),
176 Some(VisionLoaderType::Qwen2_5VL) => Box::new(Qwen2_5VLLoader),
177 Some(VisionLoaderType::Gemma3) => Box::new(Gemma3Loader),
178 Some(VisionLoaderType::Mistral3) => Box::new(Mistral3Loader),
179 Some(VisionLoaderType::Llama4) => Box::new(VLlama4Loader),
180 Some(VisionLoaderType::Gemma3n) => Box::new(Gemma3nLoader),
181 Some(VisionLoaderType::Qwen3VL) => Box::new(Qwen3VLLoader),
182 Some(VisionLoaderType::Qwen3VLMoE) => Box::new(Qwen3VLMoELoader),
183 None => Box::new(AutoVisionLoader),
184 };
185 Box::new(VisionLoader {
186 inner: loader,
187 model_id: self.model_id.unwrap(),
188 config: self.config,
189 kind: self.kind,
190 chat_template: self.chat_template,
191 tokenizer_json: self.tokenizer_json,
192 xlora_model_id: None,
193 xlora_order: None,
194 jinja_explicit: self.jinja_explicit,
195 token_source: RwLock::new(None),
196 revision: RwLock::new(None),
197 from_uqff: RwLock::new(None),
198 hf_cache_path: self.hf_cache_path,
199 lora_adapter_ids: self.lora_adapter_ids,
200 })
201 }
202}
203
204impl Loader for VisionLoader {
205 #[allow(clippy::type_complexity, clippy::too_many_arguments)]
206 fn load_model_from_hf(
207 &self,
208 revision: Option<String>,
209 token_source: TokenSource,
210 dtype: &dyn TryIntoDType,
211 device: &Device,
212 silent: bool,
213 mapper: DeviceMapSetting,
214 in_situ_quant: Option<IsqType>,
215 paged_attn_config: Option<PagedAttentionConfig>,
216 ) -> Result<Arc<Mutex<dyn Pipeline + Send + Sync>>> {
217 let _progress_guard = ProgressScopeGuard::new(silent);
218 let cache = self
219 .hf_cache_path
220 .clone()
221 .map(Cache::new)
222 .unwrap_or_default();
223 GLOBAL_HF_CACHE.get_or_init(|| cache);
224
225 let paths: anyhow::Result<Box<dyn ModelPaths>> = get_paths!(
226 LocalModelPaths,
227 &token_source,
228 revision.clone(),
229 self,
230 None,
231 None,
232 silent,
233 self.config.from_uqff.is_some()
234 );
235 if let Some(from_uqff) = self.config.from_uqff.clone() {
236 *self.from_uqff.write().unwrap() = Some(get_uqff_paths!(&from_uqff, self, silent));
237 }
238 *self
239 .token_source
240 .write()
241 .expect("Failed to write to token source") = Some(token_source);
242 *self.revision.write().expect("Failed to write to revision") = revision;
243 self.load_model_from_path(
244 &paths?,
245 dtype,
246 device,
247 silent,
248 mapper,
249 in_situ_quant,
250 paged_attn_config,
251 )
252 }
253
254 #[allow(clippy::type_complexity, clippy::too_many_arguments)]
255 fn load_model_from_path(
256 &self,
257 paths: &Box<dyn ModelPaths>,
258 dtype: &dyn TryIntoDType,
259 device: &Device,
260 silent: bool,
261 mut mapper: DeviceMapSetting,
262 in_situ_quant: Option<IsqType>,
263 mut paged_attn_config: Option<PagedAttentionConfig>,
264 ) -> Result<Arc<Mutex<dyn Pipeline + Send + Sync>>> {
265 let _progress_guard = ProgressScopeGuard::new(silent);
266 let config = std::fs::read_to_string(paths.get_config_filename())?;
267
268 if !self.inner.supports_paged_attention(&config) {
269 paged_attn_config = None;
270 }
271
272 info!("Prompt chunk size is {ATTENTION_CHUNK_SIZE}.");
273
274 let use_nccl = mistralrs_quant::distributed::use_nccl();
275
276 let available_devices = if let Ok(payload) = env::var(distributed::IS_DAEMON_FLAG) {
277 let payload: WorkerTransferData = serde_json::from_str(&payload)?;
278 let WorkerTransferData::Init { id: _, worker_rank } = payload;
279 vec![candle_core::Device::new_cuda_with_stream(worker_rank + 1)?]
280 } else if use_nccl {
281 vec![candle_core::Device::new_cuda_with_stream(0)?]
282 } else {
283 device_map::get_all_similar_devices(device)?
284 };
285 #[cfg(feature = "cuda")]
286 for device in &available_devices {
287 if let Device::Cuda(dev) = device {
288 unsafe { dev.disable_event_tracking() };
289 }
290 }
291 let device = if use_nccl {
292 available_devices[0].clone()
293 } else {
294 device.clone()
295 };
296
297 let matformer_slicing_config = if let Some(matformer_path) =
299 &self.config.matformer_config_path
300 {
301 use crate::matformer::{MatformerConfig, MatformerSliceConfig};
302 info!("Loading Matformer config from {:?}", matformer_path);
303 let config = Arc::new(MatformerConfig::from_file(matformer_path)?);
304
305 if let Some(slice_name) = &self.config.matformer_slice_name {
306 info!("Using Matformer slice: {}", slice_name);
307 Some(MatformerSliceConfig::new(slice_name.clone(), config))
308 } else {
309 warn!("Matformer config loaded but no slice name specified. Models will use their default slice.");
312 None
313 }
314 } else {
315 None
316 };
317
318 if use_nccl {
320 mapper = DeviceMapSetting::DummyNccl {
321 nm_device: available_devices[0].clone(),
322 };
323 } else if let DeviceMapSetting::Auto(mut params) = mapper.clone() {
324 params = params.maybe_promote_to_vision();
326
327 let dtype = dtype.try_into_dtype(&available_devices.iter().collect::<Vec<_>>())?;
329
330 let (layer_sizes_in_bytes, non_mapped_size_in_bytes, total_model_size_in_bytes) =
333 if let Some(serialized) = &*self.from_uqff.read().unwrap() {
334 let weight_pack_factor = {
335 let ser_artifacts = unsafe {
336 candle_core::safetensors::MmapedSafetensors::multi(serialized)?
337 };
338 let mut total_pack_factors = 0;
339 let total_tensors = ser_artifacts.tensors().len();
340 for (_, artifact) in ser_artifacts.tensors() {
341 let artifact = artifact.data();
342 let isq_type = artifact[mistralrs_quant::UQFF_QUANT_TYPE_OFFSET];
344 let pack_factor = match QuantizedSerdeType::try_from(isq_type as usize)?
345 {
346 QuantizedSerdeType::Hqq => {
347 HqqLayer::get_isq_type_from_uqff(Cow::Borrowed(artifact))?
348 .pack_factor(dtype)
349 }
350 QuantizedSerdeType::Gguf => {
351 GgufMatMul::get_isq_type_from_uqff(Cow::Borrowed(artifact))?
352 .pack_factor(dtype)
353 }
354 QuantizedSerdeType::Fp8 => IsqType::F8E4M3.pack_factor(dtype),
355 QuantizedSerdeType::Unquant => 1,
356 QuantizedSerdeType::Afq => {
357 AfqLayer::get_isq_type_from_uqff(Cow::Borrowed(artifact))?
358 .pack_factor(dtype)
359 }
360 };
361 total_pack_factors += pack_factor;
362 }
363
364 total_pack_factors / total_tensors
365 };
366
367 let layer_sizes_in_bytes = self.inner.layer_sizes_in_bytes(
368 &config,
369 dtype,
370 weight_pack_factor,
371 matformer_slicing_config.as_ref(),
372 )?;
373 let non_mapped_size_in_bytes = self.inner.non_mapped_size_in_bytes(
374 &config,
375 dtype,
376 weight_pack_factor,
377 matformer_slicing_config.as_ref(),
378 )?;
379 let layer_sizes_sum = layer_sizes_in_bytes.iter().sum::<usize>();
380 (
381 layer_sizes_in_bytes,
382 non_mapped_size_in_bytes,
383 layer_sizes_sum + non_mapped_size_in_bytes,
384 )
385 } else if let Some(isq) = in_situ_quant {
386 let weight_pack_factor = isq.pack_factor(dtype);
387 let layer_sizes_in_bytes = self.inner.layer_sizes_in_bytes(
388 &config,
389 dtype,
390 weight_pack_factor,
391 matformer_slicing_config.as_ref(),
392 )?;
393 let non_mapped_size_in_bytes = self.inner.non_mapped_size_in_bytes(
394 &config,
395 dtype,
396 weight_pack_factor,
397 matformer_slicing_config.as_ref(),
398 )?;
399 let layer_sizes_sum = layer_sizes_in_bytes.iter().sum::<usize>();
400 (
401 layer_sizes_in_bytes,
402 non_mapped_size_in_bytes,
403 layer_sizes_sum + non_mapped_size_in_bytes,
404 )
405 } else {
406 let weight_pack_factor =
408 QuantizationConfigShim::get_quant_config_pack_factor(&config, dtype)?;
409 let layer_sizes_in_bytes = self.inner.layer_sizes_in_bytes(
410 &config,
411 dtype,
412 weight_pack_factor,
413 matformer_slicing_config.as_ref(),
414 )?;
415 let non_mapped_size_in_bytes = self.inner.non_mapped_size_in_bytes(
416 &config,
417 dtype,
418 weight_pack_factor,
419 matformer_slicing_config.as_ref(),
420 )?;
421 let layer_sizes_sum = layer_sizes_in_bytes.iter().sum::<usize>();
422 (
423 layer_sizes_in_bytes,
424 non_mapped_size_in_bytes,
425 layer_sizes_sum + non_mapped_size_in_bytes,
426 )
427 };
428
429 let new = auto_device_map::get_device_layers(
430 &*self.inner,
431 &config,
432 self.inner.num_layers(&config)?,
433 layer_sizes_in_bytes,
434 non_mapped_size_in_bytes,
435 total_model_size_in_bytes,
436 &available_devices,
437 dtype,
438 ¶ms,
439 paged_attn_config.as_ref(),
440 )?;
441 mapper = DeviceMapSetting::Map(new);
442 }
443
444 let pipeline_mapper = mapper.into_mapper(
445 self.inner.num_layers(&config)?,
446 &device,
447 self.config.topology.as_ref(),
448 )?;
449 let mapper = mapper.into_mapper(
450 self.inner.num_layers(&config)?,
451 &device,
452 self.config.topology.as_ref(),
453 )?;
454 let mut layer_devices = Vec::new();
455 for layer in 0..self.inner.num_layers(&config)? {
456 let device = mapper.device_for(layer, false).cloned();
457 layer_devices.push(device);
458 }
459 let dtype = mapper.get_min_dtype(dtype)?;
460
461 let mapping_uses_cpu = mapper.get_unique_devices().iter().any(Device::is_cpu);
464 if mapping_uses_cpu && paged_attn_config.is_some() {
465 warn!("Device mapping contains a mix of GPU and CPU. There is no CPU support for PagedAttention, disabling PagedAttention.");
466 paged_attn_config = None;
467 }
468
469 info!("Model config: {:?}", self.inner.get_config_repr(&config)?);
470 if crate::using_flash_attn() {
471 once_log_info("FlashAttention is enabled.");
472 }
473
474 let topology_overrides = self
475 .config
476 .topology
477 .as_ref()
478 .map(|topology| {
479 topology
480 .pattern_overrides()
481 .into_iter()
482 .map(|(regex, layer)| ImmediateIsqOverride {
483 predicate: regex,
484 ty: layer.isq,
485 device: layer.device.clone(),
486 })
487 .collect::<Vec<_>>()
488 })
489 .unwrap_or_default();
490 let has_override_isq = topology_overrides
491 .iter()
492 .any(|override_entry| override_entry.ty.is_some());
493 let topology_requires_post_quant = self
494 .config
495 .topology
496 .as_ref()
497 .is_some_and(|topology| topology.requires_post_quantization());
498
499 let allow_immediate_cli = self.config.imatrix.is_none()
500 && self.config.calibration_file.is_none()
501 && !device.is_cuda()
502 && in_situ_quant.is_some();
503
504 let mut immediate_ty = None;
505 let mut immediate_predicates = Vec::new();
506 if allow_immediate_cli {
507 immediate_ty = in_situ_quant;
508 immediate_predicates = self.inner.immediate_isq_predicates(&config)?;
509 info!("Applying ISQ to {in_situ_quant:?}");
510 if immediate_predicates.is_empty() {
511 warn!("No predicates for this model and ISQ setting detected. ISQ will not be applied to any weights!");
512 }
513 }
514
515 let use_immediate = allow_immediate_cli || has_override_isq;
516 if use_immediate {
517 mistralrs_quant::set_immediate_isq_with_overrides(
518 immediate_ty,
519 immediate_predicates.clone(),
520 topology_overrides.clone(),
521 );
522 }
523
524 let mut loading_isq = if use_immediate {
526 false
527 } else {
528 in_situ_quant.is_some()
529 };
530 if self.config.imatrix.is_some() || self.config.calibration_file.is_some() {
531 loading_isq = true;
532 }
533 loading_isq |= topology_requires_post_quant;
534
535 if self.config.imatrix.is_some() && self.config.calibration_file.is_some() {
536 anyhow::bail!(
537 "`imatrix` and `calibration_file` were both specified, this is not allowed."
538 );
539 }
540
541 let load_device = if !loading_isq || self.config.calibration_file.is_some() {
543 loading_isq = false;
544 device.clone()
545 } else {
546 Device::Cpu
547 };
548
549 let attention_mechanism = if paged_attn_config.is_some() {
550 AttentionImplementation::PagedAttention
551 } else {
552 AttentionImplementation::Eager
553 };
554
555 let multi_progress = Arc::new(new_multi_progress());
556
557 let mut model = if use_nccl {
558 let (mapper, sharded_vb) = distributed::prepare_distributed_mapper(
559 dtype,
560 &device,
561 &available_devices,
562 silent,
563 &config,
564 loading_isq,
565 self.config.from_uqff.is_some(),
566 IsqOrganization::Default,
567 &*self.inner,
568 paths.as_ref(),
569 )?;
570
571 match self.kind {
573 ModelKind::Normal => vision_normal_model_loader_sharded!(
574 sharded_vb,
575 config,
576 self.inner,
577 mapper,
578 loading_isq,
579 device.clone(),
580 attention_mechanism,
581 multi_progress.clone(),
582 matformer_slicing_config.clone(),
583 ),
584 _ => unreachable!(),
585 }
586 } else {
587 match self.kind {
588 ModelKind::Normal => vision_normal_model_loader!(
589 paths,
590 Some(dtype),
591 &load_device,
592 layer_devices.clone(),
593 config,
594 self.inner,
595 silent,
596 mapper,
597 loading_isq,
598 self.config.from_uqff.is_some(),
599 device.clone(),
600 attention_mechanism,
601 multi_progress,
602 matformer_slicing_config.clone(),
603 ),
604 _ => unreachable!(),
605 }
606 };
607
608 let preprocessor_config: PreProcessorConfig = match paths.get_preprocessor_config().as_ref()
610 {
611 Some(preprocessor_config) => {
612 serde_json::from_str(&fs::read_to_string(preprocessor_config).unwrap()).unwrap()
613 }
614 None => PreProcessorConfig::default(),
615 };
616 let processor_config: Option<ProcessorConfig> = paths
617 .get_processor_config()
618 .as_ref()
619 .map(|f| serde_json::from_str(&fs::read_to_string(f).unwrap()).unwrap());
620
621 let processor = self.inner.get_processor(
622 &config,
623 processor_config,
624 preprocessor_config.clone(),
625 self.config.max_edge,
626 ); let tokenizer = get_tokenizer(
629 paths.get_tokenizer_filename(),
630 Some(processor.get_special_tokens()),
631 )?;
632
633 let gen_conf: Option<GenerationConfig> = paths
634 .get_gen_conf_filename()
635 .map(|f| serde_json::from_str(&fs::read_to_string(f).unwrap()).unwrap());
636 let chat_template_explicit = paths
637 .get_chat_template_explicit()
638 .as_ref()
639 .map(|x| x.to_string_lossy().to_string());
640 let chat_template = get_chat_template(
641 paths,
642 self.jinja_explicit.as_ref(),
643 chat_template_explicit.as_ref(),
644 self.chat_template.as_ref(),
645 None,
646 );
647
648 if let Some(calibration_file) = &self.config.calibration_file {
649 let calibration_data = std::fs::read_to_string(calibration_file)?;
650 let tokens = tokenizer
652 .encode_fast(calibration_data, false)
653 .map_err(anyhow::Error::msg)?
654 .get_ids()
655 .to_vec();
656 info!(
657 "Collecting imatrix from calibration file `{}` of {} tokens.",
658 calibration_file.display(),
659 tokens.len()
660 );
661 let bos_toks = chat_template.bos_tok().map(|b| vec![b]).unwrap_or_default();
662 let bos_tok_id = tokenizer
663 .token_to_id(&bos_toks[0])
664 .expect("Somehow the bos token is not present.");
665
666 model.begin_track_stats()?;
669
670 const CHUNK_SIZE: usize = 1024;
671 let n_chunks: usize = tokens.len().div_ceil(CHUNK_SIZE);
672 let start = Instant::now();
673 for (i, chunk) in tokens.chunks(CHUNK_SIZE).enumerate() {
674 let chunk = [vec![bos_tok_id], chunk.to_vec()].concat();
675 let chunk_len = chunk.len();
676
677 let start = Instant::now();
678 let inputs = make_prompt_chunk(
679 0,
680 vec![&chunk],
681 &[0],
682 &load_device,
683 None,
684 false,
685 None,
686 None,
687 )?;
688 let _ = model.forward(
689 &inputs.input,
690 None, &inputs.positions,
692 inputs.context_lens,
693 inputs.position_ids,
694 model.default_model_specific_args(&inputs.input),
695 None,
696 &inputs.flash_meta,
697 )?;
698 match model.cache_mut() {
699 EitherCache::Full(full) => {
700 for layer in &mut *full.lock() {
701 *layer = None
702 }
703 }
704 EitherCache::Normal(normal) => {
705 for layer in &mut *normal.lock().unwrap().0 {
706 layer.reset();
707 }
708 }
709 EitherCache::Hybrid(hybrid) => {
710 hybrid.lock().unwrap().reset();
711 }
712 }
713 let end = Instant::now();
714 info!(
715 "Processed chunk {}/{n_chunks} ({chunk_len} tokens), {:.2}s",
716 i + 1,
717 end.duration_since(start).as_secs_f32()
718 );
719 }
720 load_device.synchronize()?;
721 let end = Instant::now();
722 info!(
723 "Finished collecting imatrix in {:.2}s",
724 end.duration_since(start).as_secs_f32()
725 );
726 }
727
728 let should_serialize = self.config.write_uqff.is_some();
729 let should_quantize_pass = loading_isq;
730
731 if (should_quantize_pass || should_serialize) && self.config.from_uqff.is_none() {
732 let imatrix_source = if should_quantize_pass {
733 match (
734 self.config.imatrix.as_ref(),
735 self.config.calibration_file.is_some(),
736 ) {
737 (None, false) => None,
738 (Some(file), false) => Some(ImatrixDataSource::File(file)),
739 (None, true) => Some(ImatrixDataSource::Collected),
740 (Some(_), true) => unreachable!(),
741 }
742 } else {
743 None
744 };
745 if should_quantize_pass {
746 info!("Applying ISQ to all ranks.");
747 } else {
748 info!("Serializing existing ISQ tensors without additional quantization.");
749 }
750 model.quantize(
751 in_situ_quant,
752 device.clone(),
753 self.config.topology.as_ref(),
754 silent,
755 imatrix_source,
756 IsqOrganization::Default,
757 should_quantize_pass,
758 self.config.write_uqff.as_ref(),
759 UqffFullSer {
760 tokenizer: &tokenizer,
761 template_filename: paths.get_template_filename(),
762 generation_config: paths.get_gen_conf_filename(),
763 config: config.clone(),
764 processor_filename: paths.get_processor_config(),
765 preprocessor_filename: paths.get_preprocessor_config(),
766 modules: None,
767 module_paths: None,
768 },
769 Arc::new(new_multi_progress()),
770 )?;
771 } else if let Some(from_uqff) = &*self.from_uqff.read().unwrap() {
772 model.load_from_artifacts(
773 device.clone(),
774 self.config.topology.as_ref(),
775 silent,
776 from_uqff,
777 )?;
778 }
779
780 let (cache_config, cache_engine) = if let Some(paged_attn_config) = paged_attn_config {
781 anyhow::ensure!(
782 !matches!(self.kind, ModelKind::Adapter { .. }),
783 "PagedAttention does not support adapter models."
784 );
785 let cache_config = calculate_cache_config(
786 paged_attn_config.mem_gpu,
787 paged_attn_config.block_size,
788 dtype,
789 paged_attn_config.cache_type,
790 model.config(),
791 &device,
792 &layer_devices,
793 silent,
794 )?;
795 let cache_engine =
796 CacheEngine::new(model.config(), &cache_config, dtype, &device, layer_devices)?;
797 (Some(cache_config), Some(cache_engine))
798 } else {
799 (None, None)
800 };
801
802 let max_seq_len = model.max_seq_len();
803 let llg_factory = build_llg_factory(tokenizer.clone())?;
804 let num_hidden_layers = match model.cache() {
805 EitherCache::Full(full) => full.lock().len(),
806 EitherCache::Normal(normal) => normal.lock().unwrap().0.len(),
807 EitherCache::Hybrid(hybrid) => hybrid.lock().unwrap().num_layers(),
808 };
809 let eos = calculate_eos_tokens(&chat_template, gen_conf, &tokenizer);
810 let sliding_window = model.config().sliding_window;
811 let model_metadata = Arc::new(model.config().clone());
812 Ok(Arc::new(Mutex::new(VisionPipeline {
813 model,
814 tokenizer: tokenizer.into(),
815 chat_template: Arc::new(chat_template),
816 model_id: self.model_id.clone(),
817 metadata: Arc::new(GeneralMetadata {
818 max_seq_len,
819 llg_factory: Some(llg_factory),
820 is_xlora: false,
821 num_hidden_layers,
822 eos_tok: eos,
823 kind: self.kind.clone(),
824 no_kv_cache: false,
825 no_prefix_cache: !self.inner.supports_prefix_cacher(&config),
826 activation_dtype: dtype,
827 sliding_window,
828 cache_config,
829 cache_engine,
830 model_metadata: Some(model_metadata),
831 modalities: self.inner.modalities(&config)?,
832 }),
833 processor,
834 prefixer: self.inner.prefixer(&config),
835 preprocessor_config: Arc::new(preprocessor_config),
836 topology: self.config.topology.clone(),
837 silent,
838 template_filename: paths.get_template_filename().clone(),
839 generation_config: paths.get_gen_conf_filename().cloned(),
840 config,
841 processor_filename: paths.get_processor_config().clone(),
842 preprocessor_filename: paths.get_preprocessor_config().clone(),
843 mapper: pipeline_mapper,
844 imatrix: self.config.imatrix.clone(),
845 })))
846 }
847
848 fn get_id(&self) -> String {
849 self.model_id.to_string()
850 }
851
852 fn get_kind(&self) -> ModelKind {
853 self.kind.clone()
854 }
855}
856
857impl PreProcessingMixin for VisionPipeline {
858 fn get_chat_template(&self) -> Option<Arc<ChatTemplate>> {
859 Some(self.chat_template.clone())
860 }
861 fn get_input_processor_config(&self) -> Option<Arc<dyn Any>> {
862 Some(self.preprocessor_config.clone())
863 }
864 fn get_processor(&self) -> Arc<dyn super::Processor> {
865 self.processor.clone()
866 }
867}
868
869impl IsqPipelineMixin for VisionPipeline {
870 fn re_isq_model(&mut self, dtype: IsqType) -> Result<()> {
871 let device = self.device().clone();
872 self.model
873 .quantize(
874 Some(dtype),
875 device,
876 self.topology.as_ref(),
877 self.silent,
878 self.imatrix.as_ref().map(ImatrixDataSource::File),
879 IsqOrganization::Default,
880 true,
881 None,
882 UqffFullSer {
883 tokenizer: &self.tokenizer,
884 template_filename: &self.template_filename,
885 generation_config: self.generation_config.as_ref(),
886 config: self.config.clone(),
887 processor_filename: &self.processor_filename,
888 preprocessor_filename: &self.preprocessor_filename,
889 modules: None,
890 module_paths: None,
891 },
892 Arc::new(new_multi_progress()),
893 )
894 .map_err(anyhow::Error::msg)
895 }
896}
897
898impl CacheManagerMixin for VisionPipeline {
899 fn clone_in_cache(&self, seqs: &mut [&mut Sequence]) {
900 if matches!(self.model.cache(), EitherCache::Full(_)) {
901 FullCacheManager.clone_in_cache(self, seqs, false)
902 } else {
903 NormalCacheManager.clone_in_cache(self, seqs, false)
904 }
905 }
906 fn clone_out_cache(&self, seqs: &mut [&mut Sequence]) {
907 if matches!(self.model.cache(), EitherCache::Full(_)) {
908 FullCacheManager.clone_out_cache(self, seqs, false)
909 } else {
910 NormalCacheManager.clone_out_cache(self, seqs, false)
911 }
912 }
913 fn set_none_cache(
914 &self,
915 seqs: &mut [&mut Sequence],
916 reset_non_granular: bool,
917 modify_draft_cache: bool,
918
919 load_preallocated_cache: bool,
920 ) {
921 if matches!(self.model.cache(), EitherCache::Full(_)) {
922 FullCacheManager.set_none_cache(self, seqs, modify_draft_cache, false);
923 } else {
924 NormalCacheManager.set_none_cache(
925 self,
926 seqs,
927 modify_draft_cache,
928 load_preallocated_cache,
929 );
930 }
931 if reset_non_granular {
932 self.reset_non_granular_state()
933 }
934 }
935 fn cache(&self) -> &EitherCache {
936 self.model.cache()
937 }
938}
939
940impl MetadataMixin for VisionPipeline {
941 fn device(&self) -> Device {
942 self.model.device().clone()
943 }
944 fn get_metadata(&self) -> Arc<GeneralMetadata> {
945 self.metadata.clone()
946 }
947 fn name(&self) -> String {
948 self.model_id.clone()
949 }
950 fn reset_non_granular_state(&self) {}
951 fn tokenizer(&self) -> Option<Arc<Tokenizer>> {
952 Some(self.tokenizer.clone())
953 }
954 fn device_mapper(&self) -> Option<&dyn DeviceMapper> {
955 Some(&*self.mapper)
956 }
957}
958
959#[async_trait::async_trait]
960impl Pipeline for VisionPipeline {
961 fn forward_inputs(
962 &mut self,
963 inputs: Box<dyn Any>,
964 return_raw_logits: bool,
965 ) -> candle_core::Result<ForwardInputsResult> {
966 let ModelInputs {
967 input_ids,
968 seqlen_offsets,
969 context_lens,
970 position_ids,
971 pixel_values,
972 model_specific_args,
973 paged_attn_meta,
974 flash_meta,
975 } = *inputs.downcast::<ModelInputs>().expect("Downcast failed.");
976 let metadata = self.get_metadata();
977 let paged_attn_meta = match (&metadata.cache_engine, &paged_attn_meta) {
978 (Some(engine), Some(meta)) => Some((engine.get_kv_cache().clone(), meta)),
979 (Some(_), None) => {
980 candle_core::bail!("Forward step expected a PagedAttention input metadata. This was not provided, please ensure that the scheduler config is correctly configured for PagedAttention.")
982 }
983 (None, Some(_)) => {
984 candle_core::bail!("Forward step got a PagedAttention input metadata but there is no cache engine. Please raise an issue.")
986 }
987 (None, None) => None,
988 };
989 let logits = self.model.forward(
990 &input_ids,
991 pixel_values,
992 &seqlen_offsets,
993 context_lens,
994 position_ids,
995 model_specific_args,
996 paged_attn_meta,
997 &flash_meta,
998 )?;
999 if return_raw_logits {
1000 Ok(ForwardInputsResult::RawLogits { logits })
1001 } else {
1002 Ok(ForwardInputsResult::CausalGeneration { logits })
1003 }
1004 }
1005 async fn sample_causal_gen(
1006 &self,
1007 seqs: &mut [&mut Sequence],
1008 logits: Vec<Tensor>,
1009 prefix_cacher: &mut PrefixCacheManagerV2,
1010 disable_eos_stop: bool,
1011 rng: Arc<std::sync::Mutex<Isaac64Rng>>,
1012 ) -> Result<(), candle_core::Error> {
1013 sample_and_add_toks(self, seqs, logits, prefix_cacher, disable_eos_stop, rng).await
1014 }
1015 fn category(&self) -> ModelCategory {
1016 ModelCategory::Vision {
1017 prefixer: self.prefixer.clone(),
1018 }
1019 }
1020}
1021
1022impl AnyMoePipelineMixin for VisionPipeline {
1023 fn amoe_finish_training(&mut self, gate_model_id: Option<String>) -> candle_core::Result<()> {
1024 self.model.finish_training(gate_model_id)
1025 }
1026 fn amoe_layer_vars(&self) -> Vec<Vec<Var>> {
1027 self.model.get_vars()
1028 }
1029 fn amoe_base_model_trainable_params(&self) -> usize {
1030 self.model.trainable_params()
1031 }
1032 fn amoe_take_cached_gating_outputs(&mut self) -> Vec<Tensor> {
1033 self.model.take_cached_gating_outputs()
1034 }
1035 fn amoe_create_layers(
1036 &mut self,
1037 model_ids: Vec<String>,
1038 token: &TokenSource,
1039 revision: Option<String>,
1040 match_regex: &str,
1041 config: crate::amoe::AnyMoeConfig,
1042 dtype: candle_core::DType,
1043 dev: &Device,
1044 (prefix, mlp): (String, String),
1045 layers: Vec<usize>,
1046 expert_type: AnyMoeExpertType,
1047 silent: bool,
1048 gate_model_id: Option<String>,
1049 ) -> candle_core::Result<()> {
1050 let mut vbs = Vec::new();
1051 let regex = Regex::new(match_regex).map_err(candle_core::Error::msg)?;
1053 for model_id in model_ids {
1054 let model_id_str = &model_id;
1055 let model_id = Path::new(&model_id);
1056
1057 let api = {
1058 let cache = GLOBAL_HF_CACHE.get().cloned().unwrap_or_default();
1059 let mut api = ApiBuilder::from_cache(cache)
1060 .with_progress(!silent)
1061 .with_token(get_token(token).map_err(candle_core::Error::msg)?);
1062 if let Ok(x) = std::env::var("HF_HUB_CACHE") {
1063 api = api.with_cache_dir(x.into());
1064 }
1065 api.build().map_err(candle_core::Error::msg)?
1066 };
1067 let revision = revision.clone().unwrap_or("main".to_string());
1068 let api = api.repo(Repo::with_revision(
1069 model_id_str.clone(),
1070 RepoType::Model,
1071 revision.clone(),
1072 ));
1073
1074 let mut filenames = vec![];
1075 for rfilename in
1076 api_dir_list!(api, model_id, true).filter(|x| x.ends_with(".safetensors"))
1077 {
1078 filenames.push(api_get_file!(api, &rfilename, model_id));
1079 }
1080
1081 let regex = regex.clone();
1082 let match_regex_clone = match_regex.to_string();
1083 let layers_clone = layers.clone();
1084 let vb = from_mmaped_safetensors(
1085 filenames,
1086 vec![],
1087 Some(dtype),
1088 dev,
1089 vec![None],
1090 silent,
1091 None,
1092 move |key| {
1093 if regex.is_match(&key) {
1094 let last_layer_idx = key.find(&match_regex_clone).unwrap() - 1;
1097 let first_layer_idx = key[..last_layer_idx].rfind('.').unwrap();
1098 let layer_n = key[first_layer_idx + 1..last_layer_idx]
1099 .parse::<usize>()
1100 .unwrap();
1101 layers_clone.contains(&layer_n) || layers_clone.is_empty()
1102 } else {
1103 false
1104 }
1105 },
1106 Arc::new(|_| DeviceForLoadTensor::Base),
1107 )?;
1108 vbs.push(vb);
1109 }
1110
1111 let gate_vb = if let Some(gate_model_id) = gate_model_id {
1112 let model_id_str = &gate_model_id;
1113 let model_id = Path::new(&gate_model_id);
1114
1115 let api = {
1116 let cache = GLOBAL_HF_CACHE.get().cloned().unwrap_or_default();
1117 let mut api = ApiBuilder::from_cache(cache)
1118 .with_progress(!silent)
1119 .with_token(get_token(token).map_err(candle_core::Error::msg)?);
1120 if let Ok(x) = std::env::var("HF_HUB_CACHE") {
1121 api = api.with_cache_dir(x.into());
1122 }
1123 api.build().map_err(candle_core::Error::msg)?
1124 };
1125 let revision = revision.clone().unwrap_or("main".to_string());
1126 let api = api.repo(Repo::with_revision(
1127 model_id_str.clone(),
1128 RepoType::Model,
1129 revision.clone(),
1130 ));
1131
1132 let mut gate_filenames = vec![];
1133 for rfilename in
1134 api_dir_list!(api, model_id, true).filter(|x| x.ends_with(".safetensors"))
1135 {
1136 gate_filenames.push(api_get_file!(api, &rfilename, model_id));
1137 }
1138 assert_eq!(
1139 gate_filenames.len(),
1140 1,
1141 "Gate model ID must contain only one .safetensors file"
1142 );
1143
1144 let vb = from_mmaped_safetensors(
1145 gate_filenames.clone(),
1146 vec![],
1147 Some(dtype),
1148 dev,
1149 vec![None],
1150 silent,
1151 None,
1152 |_| true,
1153 Arc::new(|_| DeviceForLoadTensor::Base),
1154 )?;
1155 info!(
1156 "Loaded gating layers from `{}`",
1157 gate_filenames[0].display()
1158 );
1159 Some(vb)
1160 } else {
1161 None
1162 };
1163
1164 self.model
1165 .create_anymoe_layers(vbs, config, (prefix, mlp), layers, expert_type, gate_vb)
1166 }
1167 fn amoe_supported(&self) -> bool {
1168 self.model.amoe_supported()
1169 }
1170}