1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use std::sync::Arc;
4
5use candle_core::{IndexOp, Result, Shape, Tensor, D};
7use candle_nn::{Conv2dConfig, Module};
8use mistralrs_quant::{QuantMethod, ShardedVarBuilder};
9
10use crate::{
11 layers::{self, MatMul},
12 serde_default_fn,
13 utils::unvarbuilder::UnVarBuilder,
14};
15
16#[derive(Debug, Clone, Copy, serde::Deserialize)]
17pub enum Activation {
18 QuickGelu,
19}
20
21impl Module for Activation {
22 fn forward(&self, xs: &Tensor) -> Result<Tensor> {
23 match self {
24 Activation::QuickGelu => xs * candle_nn::ops::sigmoid(&(xs * 1.702f64)?),
25 }
26 }
27}
28
29serde_default_fn!(usize, d_hidden_size, 768);
30serde_default_fn!(usize, d_intermediate_size, 3072);
31serde_default_fn!(usize, d_num_hidden_layers, 12);
32serde_default_fn!(usize, d_num_attention_heads, 12);
33serde_default_fn!(usize, d_num_channels, 3);
34serde_default_fn!(usize, d_image_size, 224);
35serde_default_fn!(usize, d_patch_size, 32);
36serde_default_fn!(Activation, d_act, Activation::QuickGelu);
37
38#[derive(Debug, Clone, serde::Deserialize)]
39pub struct ClipConfig {
40 #[serde(default = "d_hidden_size")]
41 pub hidden_size: usize,
42 #[serde(default = "d_intermediate_size")]
43 pub intermediate_size: usize,
44 #[serde(default = "d_num_hidden_layers")]
45 pub num_hidden_layers: usize,
46 #[serde(default = "d_num_attention_heads")]
47 pub num_attention_heads: usize,
48 #[serde(default = "d_num_channels")]
49 pub num_channels: usize,
50 #[serde(default = "d_image_size")]
51 pub image_size: usize,
52 #[serde(default = "d_patch_size")]
53 pub patch_size: usize,
54 #[serde(default = "d_act")]
55 pub hidden_act: Activation,
56}
57
58#[derive(Clone, Debug)]
60struct ClipVisionEmbeddings {
61 patch_embedding: candle_nn::Conv2d,
62 position_ids: Tensor,
63 class_embedding: Tensor,
64 position_embedding: candle_nn::Embedding,
65}
66
67impl ClipVisionEmbeddings {
68 fn new(vs: ShardedVarBuilder, c: &ClipConfig) -> Result<Self> {
69 let class_embedding = if vs.contains_tensor("class_embedding") {
71 vs.get(c.hidden_size, "class_embedding")?
72 } else {
73 Tensor::randn(0f32, 1f32, c.hidden_size, vs.device())?
74 };
75
76 let num_patches = (c.image_size / c.patch_size).pow(2);
77 let num_positions = num_patches + 1;
78 let position_ids = Tensor::arange(0, num_positions as i64, vs.device())?;
79
80 let conv2dconfig = Conv2dConfig {
81 stride: c.patch_size,
82 ..Default::default()
83 };
84 let position_embedding = layers::embedding(
85 num_positions,
86 c.hidden_size,
87 vs.pp("position_embedding"),
88 &None,
89 )?;
90 let patch_embedding = layers::conv2d_no_bias(
91 c.num_channels,
92 c.hidden_size,
93 c.patch_size,
94 conv2dconfig,
95 vs.pp("patch_embedding"),
96 )?;
97 Ok(Self {
98 patch_embedding,
99 position_ids,
100 class_embedding,
101 position_embedding,
102 })
103 }
104}
105
106impl Module for ClipVisionEmbeddings {
107 fn forward(&self, pixel_values: &Tensor) -> Result<Tensor> {
108 let batch_size = pixel_values.shape().dims();
109 let patch_embeds = self
110 .patch_embedding
111 .forward(pixel_values)?
112 .flatten_from(2)?
113 .transpose(1, 2)?;
114 let shape = Shape::from((batch_size[0], 1, self.class_embedding.dim(D::Minus1)?));
115 let class_embeds = self.class_embedding.expand(shape)?;
116 let embeddings = Tensor::cat(&[class_embeds, patch_embeds], 1)?;
117 let position_embedding = self.position_embedding.forward(&self.position_ids)?;
118 embeddings.broadcast_add(&position_embedding)
119 }
120}
121
122#[derive(Clone, Debug)]
123struct ClipAttention {
124 k_proj: Arc<dyn QuantMethod>,
125 v_proj: Arc<dyn QuantMethod>,
126 q_proj: Arc<dyn QuantMethod>,
127 out_proj: Arc<dyn QuantMethod>,
128 head_dim: usize,
129 scale: f64,
130 num_attention_heads: usize,
131}
132
133impl ClipAttention {
134 fn new(vs: ShardedVarBuilder, c: &ClipConfig) -> Result<Self> {
135 let hidden_size = c.hidden_size;
136 let num_attention_heads = c.num_attention_heads;
137 let k_proj = mistralrs_quant::linear(hidden_size, hidden_size, &None, vs.pp("k_proj"))?;
138 let v_proj = mistralrs_quant::linear(hidden_size, hidden_size, &None, vs.pp("v_proj"))?;
139 let q_proj = mistralrs_quant::linear(hidden_size, hidden_size, &None, vs.pp("q_proj"))?;
140 let out_proj = mistralrs_quant::linear(hidden_size, hidden_size, &None, vs.pp("out_proj"))?;
141 let head_dim = hidden_size / num_attention_heads;
142 let scale = (head_dim as f64).powf(-0.5);
143
144 Ok(ClipAttention {
145 k_proj,
146 v_proj,
147 q_proj,
148 out_proj,
149 head_dim,
150 scale,
151 num_attention_heads,
152 })
153 }
154
155 fn shape(&self, xs: &Tensor, seq_len: usize, bsz: usize) -> Result<Tensor> {
156 xs.reshape((bsz, seq_len, self.num_attention_heads, self.head_dim))?
157 .transpose(1, 2)?
158 .contiguous()
159 }
160
161 fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
162 let (bsz, seq_len, hidden_size) = xs.dims3()?;
163
164 let query_states = (self.q_proj.forward(xs)? * self.scale)?;
165 let proj_shape = (bsz * self.num_attention_heads, seq_len, self.head_dim);
166 let query_states = self
167 .shape(&query_states, seq_len, bsz)?
168 .reshape(proj_shape)?;
169 let key_states = self
170 .shape(&self.k_proj.forward(xs)?, seq_len, bsz)?
171 .reshape(proj_shape)?;
172 let value_states = self
173 .shape(&self.v_proj.forward(xs)?, seq_len, bsz)?
174 .reshape(proj_shape)?;
175 let attn_weights = MatMul.matmul(&query_states, &key_states.transpose(1, 2)?)?;
176
177 let src_len = key_states.dim(1)?;
178
179 let attn_weights = if let Some(causal_attention_mask) = causal_attention_mask {
180 attn_weights
181 .reshape((bsz, self.num_attention_heads, seq_len, src_len))?
182 .broadcast_add(causal_attention_mask)?
183 .reshape((bsz * self.num_attention_heads, seq_len, src_len))?
184 } else {
185 attn_weights
186 };
187
188 let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
189
190 let attn_output = MatMul.matmul(&attn_weights, &value_states)?;
191 let attn_output = attn_output
192 .reshape((bsz, self.num_attention_heads, seq_len, self.head_dim))?
193 .transpose(1, 2)?
194 .reshape((bsz, seq_len, hidden_size))?;
195 self.out_proj.forward(&attn_output)
196 }
197}
198
199#[derive(Clone, Debug)]
200struct ClipMlp {
201 fc1: Arc<dyn QuantMethod>,
202 fc2: Arc<dyn QuantMethod>,
203 activation: Activation,
204}
205
206impl ClipMlp {
207 fn new(vs: ShardedVarBuilder, c: &ClipConfig) -> Result<Self> {
208 let fc1 = mistralrs_quant::linear(c.hidden_size, c.intermediate_size, &None, vs.pp("fc1"))?;
209 let fc2 = mistralrs_quant::linear(c.intermediate_size, c.hidden_size, &None, vs.pp("fc2"))?;
210
211 Ok(ClipMlp {
212 fc1,
213 fc2,
214 activation: c.hidden_act,
215 })
216 }
217}
218
219impl ClipMlp {
220 fn forward(&self, xs: &Tensor) -> Result<Tensor> {
221 let xs = self.fc1.forward(xs)?;
222 self.fc2.forward(&self.activation.forward(&xs)?)
223 }
224}
225
226#[derive(Clone, Debug)]
227struct ClipEncoderLayer {
228 self_attn: ClipAttention,
229 layer_norm1: candle_nn::LayerNorm,
230 mlp: ClipMlp,
231 layer_norm2: candle_nn::LayerNorm,
232}
233
234impl ClipEncoderLayer {
235 fn new(vs: ShardedVarBuilder, c: &ClipConfig) -> Result<Self> {
236 let self_attn = ClipAttention::new(vs.pp("self_attn"), c)?;
237 let layer_norm1 = layers::layer_norm(c.hidden_size, 1e-5, vs.pp("layer_norm1"))?;
238 let mlp = ClipMlp::new(vs.pp("mlp"), c)?;
239 let layer_norm2 = layers::layer_norm(c.hidden_size, 1e-5, vs.pp("layer_norm2"))?;
240
241 Ok(ClipEncoderLayer {
242 self_attn,
243 layer_norm1,
244 mlp,
245 layer_norm2,
246 })
247 }
248
249 fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
250 let residual = xs;
251 let xs = self.layer_norm1.forward(xs)?;
252 let xs = self.self_attn.forward(&xs, causal_attention_mask)?;
253 let xs = (xs + residual)?;
254
255 let residual = &xs;
256 let xs = self.layer_norm2.forward(&xs)?;
257 let xs = self.mlp.forward(&xs)?;
258 xs + residual
259 }
260}
261
262#[derive(Clone, Debug)]
263pub struct ClipEncoder {
264 layers: Vec<ClipEncoderLayer>,
265}
266
267impl ClipEncoder {
268 pub fn new(vs: ShardedVarBuilder, c: &ClipConfig) -> Result<Self> {
269 let vs = vs.pp("layers");
270 let mut layers: Vec<ClipEncoderLayer> = Vec::new();
271 for index in 0..c.num_hidden_layers {
272 let layer = ClipEncoderLayer::new(vs.pp(index.to_string()), c)?;
273 layers.push(layer)
274 }
275 Ok(ClipEncoder { layers })
276 }
277
278 pub fn forward_get_hidden_states(
279 &self,
280 xs: &Tensor,
281 causal_attention_mask: Option<&Tensor>,
282 ) -> Result<Vec<Tensor>> {
283 let mut xs = xs.clone();
284 let mut hidden_states = Vec::new();
285 for layer in self.layers.iter() {
286 xs = layer.forward(&xs, causal_attention_mask)?;
287 hidden_states.push(xs.clone());
288 }
289 Ok(hidden_states)
290 }
291}
292
293#[derive(Clone, Debug)]
295pub struct ClipVisionTransformer {
296 embeddings: ClipVisionEmbeddings,
297 encoder: ClipEncoder,
298 pre_layer_norm: candle_nn::LayerNorm,
299 final_layer_norm: candle_nn::LayerNorm,
300}
301
302impl ClipVisionTransformer {
303 pub fn new(vb: ShardedVarBuilder, c: &ClipConfig) -> Result<Self> {
306 let embeddings = ClipVisionEmbeddings::new(vb.pp("embeddings"), c)?;
307 let pre_layer_norm = layers::layer_norm(c.hidden_size, 1e-5, vb.pp("pre_layrnorm"))?;
308 let encoder = ClipEncoder::new(vb.pp("encoder"), c)?;
309 let final_layer_norm = layers::layer_norm(c.hidden_size, 1e-5, vb.pp("post_layernorm"))?;
310 Ok(Self {
311 embeddings,
312 encoder,
313 final_layer_norm,
314 pre_layer_norm,
315 })
316 }
317
318 pub fn forward_get_hidden_states(&self, pixel_values: &Tensor) -> Result<Vec<Tensor>> {
319 let hidden_states = pixel_values
320 .apply(&self.embeddings)?
321 .apply(&self.pre_layer_norm)?;
322 let mut result = self
323 .encoder
324 .forward_get_hidden_states(&hidden_states, None)?;
325 let encoder_outputs = result.last().unwrap();
326 let pooled_output = encoder_outputs.i((.., 0, ..))?;
327 result.push(self.final_layer_norm.forward(&pooled_output)?.clone());
328 Ok(result)
329 }
330
331 pub fn residual_tensors(&self) -> Vec<(String, Tensor)> {
332 let uvb = UnVarBuilder::new();
333
334 uvb.pp("pre_layrnorm").add(&self.pre_layer_norm);
335 uvb.pp("post_layernorm").add(&self.final_layer_norm);
336
337 {
339 let uvb_emb = uvb.pp("embeddings");
340
341 uvb_emb.add_tensor("class_embedding", self.embeddings.class_embedding.clone());
342 uvb_emb
343 .pp("position_embedding")
344 .add(&self.embeddings.position_embedding);
345 uvb_emb
346 .pp("patch_embedding")
347 .add(&self.embeddings.patch_embedding);
348 }
349
350 {
352 let uvb_enc = uvb.pp("encoder");
353
354 for (i, layer) in self.encoder.layers.iter().enumerate() {
355 let uvb_l = uvb_enc.pp("layers").pp(i);
356
357 uvb_l.pp("layer_norm1").add(&layer.layer_norm1);
358 uvb_l.pp("layer_norm2").add(&layer.layer_norm2);
359
360 let uvb_mlp = uvb_l.pp("mlp");
361 uvb_mlp.pp("fc1").add(&layer.mlp.fc1);
362 uvb_mlp.pp("fc2").add(&layer.mlp.fc2);
363
364 let uvb_attn = uvb_l.pp("self_attn");
365 uvb_attn.pp("q_proj").add(&layer.self_attn.q_proj);
366 uvb_attn.pp("k_proj").add(&layer.self_attn.k_proj);
367 uvb_attn.pp("v_proj").add(&layer.self_attn.v_proj);
368 uvb_attn.pp("out_proj").add(&layer.self_attn.out_proj);
369 }
370 }
371
372 uvb.to_safetensors()
373 }
374}