1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use std::{any::Any, cmp, collections::HashMap, num::NonZeroUsize, sync::Arc};
4
5use candle_core::{Device, Result, Tensor};
6use image::{imageops::FilterType, DynamicImage, GenericImageView};
7use mistralrs_vision::{ApplyTransforms, Normalize, Rescale, ToTensorNoNorm, Transforms};
8use tokenizers::Tokenizer;
9use tracing::warn;
10
11use crate::{
12 device_map::DeviceMapper,
13 pipeline::{
14 text_models_inputs_processor::{
15 self, get_completion_input, get_prompt_input, PagedAttentionMeta,
16 },
17 InputProcessorOutput, InputsProcessor, InputsProcessorType, MessagesAction, Processor,
18 },
19 sequence::Sequence,
20 vision_models::ModelInputs,
21};
22
23use crate::vision_models::{
24 image_processor::{ImagePreProcessor, PreprocessedImages},
25 preprocessor_config::{PreProcessorConfig, ToFilter},
26 processor_config::ProcessorConfig,
27};
28
29const MAX_IMAGE_SIZE: usize = 4096;
31const FAKE_IMAGE_TOKEN: &str = "<fake_token_around_image>";
32const IMAGE_TOKEN: &str = "<image>";
33const GLOBAL_IMAGE_TOKEN: &str = "<global-img>";
34
35pub struct Idefics3ImageProcessor {
36 max_edge: Option<u32>,
37 image_seq_len: usize,
38}
39
40pub struct Idefics3Processor {
41 config: ProcessorConfig,
42 max_edge: Option<u32>,
43}
44
45impl Idefics3Processor {
46 pub fn new(
47 config: ProcessorConfig,
48 _preprocessor_config: PreProcessorConfig,
49 max_edge: Option<u32>,
50 ) -> Self {
51 Self { config, max_edge }
52 }
53}
54
55impl Processor for Idefics3Processor {
56 fn inputs_processor(&self) -> Arc<dyn InputsProcessor> {
57 Arc::new(Idefics3ImageProcessor {
59 max_edge: self.max_edge,
60 image_seq_len: self.config.image_seq_len.unwrap_or(169),
61 })
62 }
63
64 fn get_special_tokens(&self) -> &[&'static str] {
65 &["<fake_token_around_image>", "<image>", "<end_of_utterance>"]
66 }
67
68 fn template_action(&self) -> MessagesAction {
69 MessagesAction::Keep
70 }
71}
72
73fn get_image_prompt_string(n_rows: usize, n_cols: usize, image_seq_len: usize) -> String {
74 if n_rows == 0 && n_cols == 0 {
75 format!(
76 "{FAKE_IMAGE_TOKEN}{GLOBAL_IMAGE_TOKEN}{}{FAKE_IMAGE_TOKEN}",
77 IMAGE_TOKEN.repeat(image_seq_len)
78 )
79 } else {
80 let mut text_split_images = String::new();
81 for n_h in 0..n_rows {
82 for n_w in 0..n_cols {
83 text_split_images.push_str(&format!(
84 "{FAKE_IMAGE_TOKEN}<row_{}_col_{}>{}",
85 n_h + 1,
86 n_w + 1,
87 IMAGE_TOKEN.repeat(image_seq_len)
88 ));
89 }
90 text_split_images.push('\n');
91 }
92 format!(
93 "{text_split_images}\n{FAKE_IMAGE_TOKEN}{GLOBAL_IMAGE_TOKEN}{}{FAKE_IMAGE_TOKEN}",
94 IMAGE_TOKEN.repeat(image_seq_len)
95 )
96 }
97}
98
99impl InputsProcessor for Idefics3ImageProcessor {
100 fn get_type(&self) -> InputsProcessorType {
101 InputsProcessorType::Vision
102 }
103 fn process_inputs(
104 &self,
105 tokenizer: Option<Arc<Tokenizer>>,
106 input_seqs: &mut [&mut Sequence],
107 is_prompt: bool,
108 is_xlora: bool,
109 device: &Device,
110 no_kv_cache: bool,
111 last_n_context_len: Option<(usize, usize)>,
112 return_raw_logits: bool,
113 other_config: Option<Arc<dyn Any>>,
114 mut paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
115 prompt_chunksize: Option<NonZeroUsize>,
116 mapper: Option<&dyn DeviceMapper>,
117 ) -> Box<dyn Iterator<Item = anyhow::Result<InputProcessorOutput>>> {
118 if is_xlora {
119 return Box::new(std::iter::once(Err(anyhow::Error::msg(
120 "Cannot make inputs for X-LoRA vision model.",
121 ))));
122 }
123 if no_kv_cache {
124 return Box::new(std::iter::once(Err(anyhow::Error::msg(
125 "Vision model must have kv cache.",
126 ))));
127 }
128 if prompt_chunksize.is_some() {
130 warn!("`prompt_chunksize` is set. Idefics 3 does not support prompt batching.");
131 }
132 let Some(tokenizer) = tokenizer else {
133 return Box::new(std::iter::once(Err(anyhow::Error::msg(
134 "Idefics3ImageProcessor requires a specified tokenizer.",
135 ))));
136 };
137
138 let config = other_config.expect("Need a PreProcessorConfig config.");
139 let config: &PreProcessorConfig = config.downcast_ref().expect("Downcast failed.");
140
141 let has_images = input_seqs.iter().all(|seq| seq.has_images());
142
143 let (pixel_values, pixel_attention_mask) = if has_images {
144 let mut pixel_values_accum = Vec::new();
145 let mut pixel_attention_mask_accum = Vec::new();
146 for seq in input_seqs.iter_mut() {
147 let PreprocessedImages {
148 pixel_values,
149 pixel_attention_mask,
150 image_sizes: _,
151 num_img_tokens: _,
152 aspect_ratio_ids: _,
153 aspect_ratio_mask: _,
154 num_tiles: _,
155 image_grid_thw: _,
156 video_grid_thw: _,
157 rows,
158 cols,
159 pixel_values_list: _,
160 tgt_sizes: _,
161 image_sizes_all: _,
162 num_crops: _,
163 } = self
164 .preprocess(
165 seq.take_images()
166 .expect("Need to have images by this point."),
167 vec![],
168 config,
169 device,
170 (usize::MAX, usize::MAX), )
172 .expect("Preprocessing failed");
173 pixel_values_accum.push(pixel_values.unsqueeze(0).unwrap());
174 pixel_attention_mask_accum
175 .push(pixel_attention_mask.unwrap().unsqueeze(0).unwrap());
176
177 let detok = tokenizer
178 .decode(seq.get_toks(), false)
179 .expect("Detokenization failed!");
180
181 let mut image_prompt_strings = Vec::new();
182 for (n_rows, n_cols) in rows.unwrap().into_iter().zip(cols.unwrap().into_iter()) {
183 let image_prompt_string =
184 get_image_prompt_string(n_rows, n_cols, self.image_seq_len);
185 image_prompt_strings.push(image_prompt_string);
186 }
187
188 let split_sample = detok.split(IMAGE_TOKEN).collect::<Vec<_>>();
189 let mut sample = split_sample
190 .first()
191 .expect("The image token <image> should be present in the text.")
192 .to_string();
193 for (i, image_prompt_string) in image_prompt_strings.into_iter().enumerate() {
194 sample.push_str(&format!("{image_prompt_string}{}", split_sample[i]));
195 }
196
197 seq.set_initial_prompt(sample.clone());
198 let toks = tokenizer
199 .encode_fast(sample, false)
200 .expect("Detokenization failed!");
201
202 let ids = toks.get_ids().to_vec();
203 seq.set_toks_and_reallocate(ids, paged_attn_metadata.as_mut());
204 }
205
206 (
207 Some(Tensor::cat(&pixel_values_accum, 0).unwrap()),
208 Some(Tensor::cat(&pixel_attention_mask_accum, 0).unwrap()),
209 )
210 } else {
211 (None, None)
212 };
213
214 let text_models_inputs_processor::InnerInputProcessorOutput {
215 inputs:
216 text_models_inputs_processor::InputMetadata {
217 input,
218 positions,
219 context_lens,
220 position_ids,
221 paged_attn_meta,
222 flash_meta,
223 },
224 seq_indices,
225 } = if is_prompt {
226 get_prompt_input(
227 input_seqs
228 .iter()
229 .map(|seq| seq.get_toks().to_vec())
230 .collect::<Vec<_>>(),
231 input_seqs,
232 device,
233 last_n_context_len,
234 return_raw_logits,
235 paged_attn_metadata.as_mut(),
236 None, mapper,
238 )
239 .nth(0)
240 .unwrap()
241 .unwrap()
242 } else {
243 get_completion_input(
244 input_seqs
245 .iter()
246 .map(|seq| seq.get_toks().to_vec())
247 .collect::<Vec<_>>(),
248 input_seqs,
249 device,
250 no_kv_cache,
251 last_n_context_len,
252 return_raw_logits,
253 paged_attn_metadata.as_mut(),
254 None, mapper,
256 )
257 .nth(0)
258 .unwrap()
259 .unwrap()
260 };
261
262 let inputs: Box<dyn Any> = Box::new(ModelInputs {
263 input_ids: input,
264 seqlen_offsets: positions,
265 context_lens,
266 position_ids,
267 pixel_values,
268 model_specific_args: Box::new(pixel_attention_mask),
269 paged_attn_meta,
270 flash_meta,
271 });
272 Box::new(std::iter::once(Ok(InputProcessorOutput {
273 inputs,
274 seq_indices,
275 })))
276 }
277}
278
279fn resize_output_size_rescale_to_max_len(
281 height: usize,
282 width: usize,
283 min_len: Option<usize>,
284 max_len: Option<usize>,
285) -> (usize, usize) {
286 let min_len = min_len.unwrap_or(1);
287 let max_len = max_len.unwrap_or_else(|| cmp::max(height, width));
288 let aspect_ratio = width as f32 / height as f32;
289 let (mut height, mut width) = (height, width);
290
291 if width >= height {
292 width = max_len;
293 height = (width as f32 / aspect_ratio).round() as usize;
294 if height % 2 != 0 {
295 height += 1;
296 }
297 } else {
298 height = max_len;
299 width = (height as f32 * aspect_ratio).round() as usize;
300 if width % 2 != 0 {
301 width += 1;
302 }
303 }
304
305 height = cmp::max(height, min_len);
306 width = cmp::max(width, min_len);
307
308 (height, width)
309}
310
311fn resize_output_size_scale_below_upper_bound(
313 height: usize,
314 width: usize,
315 max_len: Option<usize>,
316) -> (usize, usize) {
317 let max_len = max_len.unwrap_or_else(|| cmp::max(height, width));
318 let aspect_ratio = width as f32 / height as f32;
319 let (mut height, mut width) = (height, width);
320
321 if width >= height && width > max_len {
322 width = max_len;
323 height = (width as f32 / aspect_ratio).round() as usize;
324 } else if height > width && height > max_len {
325 height = max_len;
326 width = (height as f32 * aspect_ratio).round() as usize;
327 }
328
329 height = cmp::max(height, 1);
330 width = cmp::max(width, 1);
331
332 (height, width)
333}
334
335fn get_resize_output_image_size(
338 (h, w): (usize, usize),
339 resolution_max_side: usize,
340) -> (usize, usize) {
341 let (h, w) = resize_output_size_rescale_to_max_len(h, w, None, Some(resolution_max_side));
342 resize_output_size_scale_below_upper_bound(h, w, Some(MAX_IMAGE_SIZE))
343}
344
345fn resize_for_vision_encoder(
346 (h, w): (usize, usize),
347 vision_encoder_max_size: usize,
348) -> (usize, usize) {
349 let aspect_ratio = w as f32 / h as f32;
350
351 let (new_h, new_w) = if w >= h {
352 let new_w = ((w as f32 / vision_encoder_max_size as f32).ceil()
353 * vision_encoder_max_size as f32) as usize;
354 let mut new_h = (new_w as f32 / aspect_ratio) as usize;
355 new_h = ((new_h as f32 / vision_encoder_max_size as f32).ceil()
356 * vision_encoder_max_size as f32) as usize;
357 (new_h, new_w)
358 } else {
359 let new_h = ((h as f32 / vision_encoder_max_size as f32).ceil()
360 * vision_encoder_max_size as f32) as usize;
361 let mut new_w = (new_h as f32 * aspect_ratio) as usize;
362 new_w = ((new_w as f32 / vision_encoder_max_size as f32).ceil()
363 * vision_encoder_max_size as f32) as usize;
364 (new_h, new_w)
365 };
366
367 (new_h, new_w)
368}
369
370fn resize(
371 image: &DynamicImage,
372 size: &HashMap<String, u32>,
373 resampling: FilterType,
374) -> Result<DynamicImage> {
375 let (h, w) = if size.contains_key("longest_edge") {
376 get_resize_output_image_size(
377 (image.dimensions().1 as usize, image.dimensions().0 as usize),
378 size["longest_edge"] as usize,
379 )
380 } else if size.contains_key("height") && size.contains_key("width") {
381 (size["height"] as usize, size["width"] as usize)
382 } else {
383 candle_core::bail!(
384 "Size must be a map of `shortest_edge` and `longest_edge` or `height` and `width`."
385 );
386 };
387
388 Ok(image.resize_exact(w as u32, h as u32, resampling))
389 }
391
392fn split_image(
394 image: &DynamicImage,
395 longest_edge: usize,
396) -> Result<(Vec<DynamicImage>, usize, usize)> {
397 let (width, height) = image.dimensions();
398 let mut frames = Vec::new();
399
400 if width > longest_edge as u32 || height > longest_edge as u32 {
401 let num_splits_h = (height as f64 / (longest_edge as f64)).ceil() as usize;
402 let num_splits_w = (width as f64 / (longest_edge as f64)).ceil() as usize;
403
404 let optimal_height = (height as f64 / num_splits_h as f64).ceil() as u32;
405 let optimal_width = (width as f64 / num_splits_w as f64).ceil() as u32;
406
407 for r in 0..num_splits_h {
408 for c in 0..num_splits_w {
409 let start_x = (c as u32) * optimal_width;
410 let start_y = (r as u32) * optimal_height;
411
412 let end_x = std::cmp::min(start_x + optimal_width, width);
413 let end_y = std::cmp::min(start_y + optimal_height, height);
414
415 let cropped_image =
417 image.crop_imm(start_x, start_y, end_x - start_x, end_y - start_y);
418 frames.push(cropped_image);
419 }
420 }
421
422 let resized_image = resize(
424 image,
425 &HashMap::from([
426 ("height".to_string(), longest_edge as u32),
427 ("width".to_string(), longest_edge as u32),
428 ]),
429 FilterType::Lanczos3,
430 )?;
431 frames.push(resized_image);
432
433 Ok((frames, num_splits_h, num_splits_w))
434 } else {
435 frames.push(image.clone());
436 Ok((frames, 0, 0))
437 }
438}
439
440impl ImagePreProcessor for Idefics3ImageProcessor {
441 #[allow(clippy::excessive_precision)]
442 const DEFAULT_MEAN: [f64; 3] = [0.48145466, 0.4578275, 0.40821073];
443 #[allow(clippy::excessive_precision)]
444 const DEFAULT_STD: [f64; 3] = [0.26862954, 0.26130258, 0.27577711];
445
446 fn preprocess(
447 &self,
448 mut images: Vec<DynamicImage>,
449 videos: Vec<Vec<DynamicImage>>,
450 config: &PreProcessorConfig,
451 device: &Device,
452 (_bs, _max_num_images): (usize, usize),
453 ) -> Result<PreprocessedImages> {
454 assert!(videos.is_empty());
455
456 let mut patch_masks = Vec::new();
457 let mut pixel_values = Vec::new();
458
459 if let Some(max_edge) = self.max_edge {
460 images = mistralrs_vision::pad_to_max_edge(&images, max_edge);
461 }
462
463 for image in images.iter_mut() {
464 if config.do_convert_rgb.is_some_and(|x| x) {
466 *image = DynamicImage::ImageRgb8(image.to_rgb8());
467 }
468
469 if config.do_resize.is_some_and(|x| x) {
471 *image = resize(
472 image,
473 config.size.as_ref().unwrap(),
474 config.resampling.to_filter()?,
475 )?;
476 }
477 }
478
479 let mut image_rows = Vec::new();
480 let mut image_cols = Vec::new();
481 let mut new_images = Vec::new();
482 let max_image_size = config
483 .max_image_size
484 .clone()
485 .unwrap_or_else(|| HashMap::from([("longest_edge".to_string(), 364)]));
486 if config.do_image_splitting.unwrap_or(true) {
487 for image in images.iter_mut() {
491 let (new_h, new_w) = resize_for_vision_encoder(
492 (image.dimensions().1 as usize, image.dimensions().0 as usize),
493 max_image_size["longest_edge"] as usize,
494 );
495
496 *image =
497 image.resize_exact(new_w as u32, new_h as u32, config.resampling.to_filter()?);
498
499 let (split_image_array, rows, cols) =
500 split_image(image, max_image_size["longest_edge"] as usize)?;
501 new_images.extend(split_image_array.into_iter());
502 image_rows.push(rows);
503 image_cols.push(cols);
504 }
505 } else {
506 for image in images.iter_mut() {
508 new_images.push(resize(
509 image,
510 &HashMap::from([
511 ("height".to_string(), max_image_size["longest_edge"]),
512 ("width".to_string(), max_image_size["longest_edge"]),
513 ]),
514 FilterType::Lanczos3,
515 )?);
516 }
517 image_rows = vec![0; images.len()];
518 image_cols = vec![0; images.len()];
519 }
520 images = new_images;
521
522 let mut max_h = 0;
523 let mut max_w = 0;
524 for image in &images {
525 let (w, h) = image.dimensions();
526 if w > max_w {
527 max_w = w;
528 }
529 if h > max_h {
530 max_h = h;
531 }
532 }
533
534 for image in images.iter_mut() {
535 let transforms = Transforms {
536 input: &ToTensorNoNorm,
537 inner_transforms: &[
538 &config
539 .do_rescale
540 .is_some_and(|x| x)
541 .then_some(())
542 .map(|_| Rescale {
543 factor: config.rescale_factor,
544 }),
545 &config
546 .do_normalize
547 .is_some_and(|x| x)
548 .then_some(())
549 .map(|_| Normalize {
550 mean: config.image_mean.unwrap_or(Self::DEFAULT_MEAN).to_vec(),
551 std: config.image_std.unwrap_or(Self::DEFAULT_STD).to_vec(),
552 }),
553 ],
554 };
555
556 let mut image = image.apply(transforms, device)?;
557 if config.do_pad.is_some_and(|x| x) {
559 let (_c, h, w) = image.dims3()?;
560 let padded = mistralrs_vision::pad(&image, max_h as usize, max_w as usize)?;
561 let mask = mistralrs_vision::make_pixel_mask(&padded, h, w)?;
562 patch_masks.push(mask.unsqueeze(0)?);
563 image = padded;
564 }
565
566 pixel_values.push(image.unsqueeze(0)?)
568 }
569
570 Ok(PreprocessedImages {
571 pixel_values: Tensor::cat(&pixel_values, 0)?,
572 pixel_attention_mask: Some(Tensor::cat(&patch_masks, 0)?),
573 image_sizes: None,
574 num_img_tokens: None,
575 aspect_ratio_ids: None,
576 aspect_ratio_mask: None,
577 num_tiles: None,
578 image_grid_thw: None,
579 video_grid_thw: None,
580 rows: Some(image_rows),
581 cols: Some(image_cols),
582 pixel_values_list: None,
583 tgt_sizes: None,
584 image_sizes_all: None,
585 num_crops: None,
586 })
587 }
588}