1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use std::{any::Any, cmp, collections::HashMap, num::NonZeroUsize, sync::Arc};
4
5use candle_core::{Device, Result, Tensor};
6use image::{imageops::FilterType, DynamicImage, GenericImageView};
7use mistralrs_vision::{ApplyTransforms, Normalize, Rescale, ToTensorNoNorm, Transforms};
8use tokenizers::Tokenizer;
9use tracing::warn;
10
11use crate::{
12 device_map::DeviceMapper,
13 pipeline::{
14 text_models_inputs_processor::{
15 self, get_completion_input, get_prompt_input, PagedAttentionMeta,
16 },
17 InputProcessorOutput, InputsProcessor, InputsProcessorType, MessagesAction, Processor,
18 },
19 sequence::Sequence,
20 vision_models::ModelInputs,
21};
22
23use crate::vision_models::{
24 image_processor::{ImagePreProcessor, PreprocessedImages},
25 preprocessor_config::{PreProcessorConfig, ToFilter},
26 processor_config::ProcessorConfig,
27};
28
29const MAX_IMAGE_SIZE: usize = 4096;
31const FAKE_IMAGE_TOKEN: &str = "<fake_token_around_image>";
32const IMAGE_TOKEN: &str = "<image>";
33const GLOBAL_IMAGE_TOKEN: &str = "<global-img>";
34
35pub struct Idefics3ImageProcessor {
36 max_edge: Option<u32>,
37 image_seq_len: usize,
38}
39
40pub struct Idefics3Processor {
41 config: ProcessorConfig,
42 max_edge: Option<u32>,
43}
44
45impl Idefics3Processor {
46 pub fn new(
47 config: ProcessorConfig,
48 _preprocessor_config: PreProcessorConfig,
49 max_edge: Option<u32>,
50 ) -> Self {
51 Self { config, max_edge }
52 }
53}
54
55impl Processor for Idefics3Processor {
56 fn inputs_processor(&self) -> Arc<dyn InputsProcessor> {
57 Arc::new(Idefics3ImageProcessor {
59 max_edge: self.max_edge,
60 image_seq_len: self.config.image_seq_len.unwrap_or(169),
61 })
62 }
63
64 fn get_special_tokens(&self) -> &[&'static str] {
65 &["<fake_token_around_image>", "<image>", "<end_of_utterance>"]
66 }
67
68 fn template_action(&self) -> MessagesAction {
69 MessagesAction::Keep
70 }
71}
72
73fn get_image_prompt_string(n_rows: usize, n_cols: usize, image_seq_len: usize) -> String {
74 if n_rows == 0 && n_cols == 0 {
75 format!(
76 "{FAKE_IMAGE_TOKEN}{GLOBAL_IMAGE_TOKEN}{}{FAKE_IMAGE_TOKEN}",
77 IMAGE_TOKEN.repeat(image_seq_len)
78 )
79 } else {
80 let mut text_split_images = String::new();
81 for n_h in 0..n_rows {
82 for n_w in 0..n_cols {
83 text_split_images.push_str(&format!(
84 "{FAKE_IMAGE_TOKEN}<row_{}_col_{}>{}",
85 n_h + 1,
86 n_w + 1,
87 IMAGE_TOKEN.repeat(image_seq_len)
88 ));
89 }
90 text_split_images.push('\n');
91 }
92 format!(
93 "{text_split_images}\n{FAKE_IMAGE_TOKEN}{GLOBAL_IMAGE_TOKEN}{}{FAKE_IMAGE_TOKEN}",
94 IMAGE_TOKEN.repeat(image_seq_len)
95 )
96 }
97}
98
99impl InputsProcessor for Idefics3ImageProcessor {
100 fn get_type(&self) -> InputsProcessorType {
101 InputsProcessorType::Vision
102 }
103 fn process_inputs(
104 &self,
105 tokenizer: Option<Arc<Tokenizer>>,
106 input_seqs: &mut [&mut Sequence],
107 is_prompt: bool,
108 is_xlora: bool,
109 device: &Device,
110 no_kv_cache: bool,
111 last_n_context_len: Option<(usize, usize)>,
112 return_raw_logits: bool,
113 other_config: Option<Arc<dyn Any>>,
114 mut paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
115 prompt_chunksize: Option<NonZeroUsize>,
116 mapper: Option<&dyn DeviceMapper>,
117 ) -> Box<dyn Iterator<Item = anyhow::Result<InputProcessorOutput>>> {
118 if is_xlora {
119 return Box::new(std::iter::once(Err(anyhow::Error::msg(
120 "Cannot make inputs for X-LoRA vision model.",
121 ))));
122 }
123 if no_kv_cache {
124 return Box::new(std::iter::once(Err(anyhow::Error::msg(
125 "Vision model must have kv cache.",
126 ))));
127 }
128 if prompt_chunksize.is_some() {
130 warn!("`prompt_chunksize` is set. Idefics 3 does not support prompt batching.");
131 }
132 let Some(tokenizer) = tokenizer else {
133 return Box::new(std::iter::once(Err(anyhow::Error::msg(
134 "Idefics3ImageProcessor requires a specified tokenizer.",
135 ))));
136 };
137
138 let config = other_config.expect("Need a PreProcessorConfig config.");
139 let config: &PreProcessorConfig = config.downcast_ref().expect("Downcast failed.");
140
141 let has_images = input_seqs.iter().all(|seq| seq.has_images());
142
143 let (pixel_values, pixel_attention_mask) = if has_images {
144 let mut pixel_values_accum = Vec::new();
145 let mut pixel_attention_mask_accum = Vec::new();
146 for seq in input_seqs.iter_mut() {
147 let PreprocessedImages {
148 pixel_values,
149 pixel_attention_mask,
150 image_sizes: _,
151 num_img_tokens: _,
152 aspect_ratio_ids: _,
153 aspect_ratio_mask: _,
154 num_tiles: _,
155 image_grid_thw: _,
156 video_grid_thw: _,
157 rows,
158 cols,
159 pixel_values_list: _,
160 tgt_sizes: _,
161 image_sizes_all: _,
162 num_crops: _,
163 } = self
164 .preprocess(
165 seq.take_images()
166 .expect("Need to have images by this point."),
167 vec![],
168 config,
169 device,
170 (usize::MAX, usize::MAX), )
172 .expect("Preprocessing failed");
173 pixel_values_accum.push(pixel_values.unsqueeze(0).unwrap());
174 pixel_attention_mask_accum
175 .push(pixel_attention_mask.unwrap().unsqueeze(0).unwrap());
176
177 let detok = tokenizer
178 .decode(seq.get_toks(), false)
179 .expect("Detokenization failed!");
180
181 let mut image_prompt_strings = Vec::new();
182 for (n_rows, n_cols) in rows.unwrap().into_iter().zip(cols.unwrap().into_iter()) {
183 let image_prompt_string =
184 get_image_prompt_string(n_rows, n_cols, self.image_seq_len);
185 image_prompt_strings.push(image_prompt_string);
186 }
187
188 let split_sample = detok.split(IMAGE_TOKEN).collect::<Vec<_>>();
189 let mut sample = split_sample
190 .first()
191 .expect("The image token <image> should be present in the text.")
192 .to_string();
193 for (i, image_prompt_string) in image_prompt_strings.into_iter().enumerate() {
194 sample.push_str(&format!("{image_prompt_string}{}", split_sample[i]));
195 }
196
197 if !seq.has_changed_prompt {
198 seq.set_initial_prompt(sample.clone());
199 let toks = tokenizer
200 .encode_fast(sample, false)
201 .expect("Detokenization failed!");
202
203 let ids = toks.get_ids().to_vec();
204 seq.set_toks_and_reallocate(ids, paged_attn_metadata.as_mut());
205 seq.has_changed_prompt = true;
206 }
207 }
208
209 (
210 Some(Tensor::cat(&pixel_values_accum, 0).unwrap()),
211 Some(Tensor::cat(&pixel_attention_mask_accum, 0).unwrap()),
212 )
213 } else {
214 (None, None)
215 };
216
217 let text_models_inputs_processor::InnerInputProcessorOutput {
218 inputs:
219 text_models_inputs_processor::InputMetadata {
220 input,
221 positions,
222 context_lens,
223 position_ids,
224 paged_attn_meta,
225 flash_meta,
226 },
227 seq_indices,
228 } = if is_prompt {
229 get_prompt_input(
230 input_seqs
231 .iter()
232 .map(|seq| seq.get_toks().to_vec())
233 .collect::<Vec<_>>(),
234 input_seqs,
235 device,
236 last_n_context_len,
237 return_raw_logits,
238 paged_attn_metadata.as_mut(),
239 None, mapper,
241 )
242 .nth(0)
243 .unwrap()
244 .unwrap()
245 } else {
246 get_completion_input(
247 input_seqs
248 .iter()
249 .map(|seq| seq.get_toks().to_vec())
250 .collect::<Vec<_>>(),
251 input_seqs,
252 device,
253 no_kv_cache,
254 last_n_context_len,
255 return_raw_logits,
256 paged_attn_metadata.as_mut(),
257 None, mapper,
259 )
260 .nth(0)
261 .unwrap()
262 .unwrap()
263 };
264
265 let inputs: Box<dyn Any> = Box::new(ModelInputs {
266 input_ids: input,
267 seqlen_offsets: positions,
268 context_lens,
269 position_ids,
270 pixel_values,
271 model_specific_args: Box::new(pixel_attention_mask),
272 paged_attn_meta,
273 flash_meta,
274 });
275 Box::new(std::iter::once(Ok(InputProcessorOutput {
276 inputs,
277 seq_indices,
278 })))
279 }
280}
281
282fn resize_output_size_rescale_to_max_len(
284 height: usize,
285 width: usize,
286 min_len: Option<usize>,
287 max_len: Option<usize>,
288) -> (usize, usize) {
289 let min_len = min_len.unwrap_or(1);
290 let max_len = max_len.unwrap_or_else(|| cmp::max(height, width));
291 let aspect_ratio = width as f32 / height as f32;
292 let (mut height, mut width) = (height, width);
293
294 if width >= height {
295 width = max_len;
296 height = (width as f32 / aspect_ratio).round() as usize;
297 if height % 2 != 0 {
298 height += 1;
299 }
300 } else {
301 height = max_len;
302 width = (height as f32 * aspect_ratio).round() as usize;
303 if width % 2 != 0 {
304 width += 1;
305 }
306 }
307
308 height = cmp::max(height, min_len);
309 width = cmp::max(width, min_len);
310
311 (height, width)
312}
313
314fn resize_output_size_scale_below_upper_bound(
316 height: usize,
317 width: usize,
318 max_len: Option<usize>,
319) -> (usize, usize) {
320 let max_len = max_len.unwrap_or_else(|| cmp::max(height, width));
321 let aspect_ratio = width as f32 / height as f32;
322 let (mut height, mut width) = (height, width);
323
324 if width >= height && width > max_len {
325 width = max_len;
326 height = (width as f32 / aspect_ratio).round() as usize;
327 } else if height > width && height > max_len {
328 height = max_len;
329 width = (height as f32 * aspect_ratio).round() as usize;
330 }
331
332 height = cmp::max(height, 1);
333 width = cmp::max(width, 1);
334
335 (height, width)
336}
337
338fn get_resize_output_image_size(
341 (h, w): (usize, usize),
342 resolution_max_side: usize,
343) -> (usize, usize) {
344 let (h, w) = resize_output_size_rescale_to_max_len(h, w, None, Some(resolution_max_side));
345 resize_output_size_scale_below_upper_bound(h, w, Some(MAX_IMAGE_SIZE))
346}
347
348fn resize_for_vision_encoder(
349 (h, w): (usize, usize),
350 vision_encoder_max_size: usize,
351) -> (usize, usize) {
352 let aspect_ratio = w as f32 / h as f32;
353
354 let (new_h, new_w) = if w >= h {
355 let new_w = ((w as f32 / vision_encoder_max_size as f32).ceil()
356 * vision_encoder_max_size as f32) as usize;
357 let mut new_h = (new_w as f32 / aspect_ratio) as usize;
358 new_h = ((new_h as f32 / vision_encoder_max_size as f32).ceil()
359 * vision_encoder_max_size as f32) as usize;
360 (new_h, new_w)
361 } else {
362 let new_h = ((h as f32 / vision_encoder_max_size as f32).ceil()
363 * vision_encoder_max_size as f32) as usize;
364 let mut new_w = (new_h as f32 * aspect_ratio) as usize;
365 new_w = ((new_w as f32 / vision_encoder_max_size as f32).ceil()
366 * vision_encoder_max_size as f32) as usize;
367 (new_h, new_w)
368 };
369
370 (new_h, new_w)
371}
372
373fn resize(
374 image: &DynamicImage,
375 size: &HashMap<String, u32>,
376 resampling: FilterType,
377) -> Result<DynamicImage> {
378 let (h, w) = if size.contains_key("longest_edge") {
379 get_resize_output_image_size(
380 (image.dimensions().1 as usize, image.dimensions().0 as usize),
381 size["longest_edge"] as usize,
382 )
383 } else if size.contains_key("height") && size.contains_key("width") {
384 (size["height"] as usize, size["width"] as usize)
385 } else {
386 candle_core::bail!(
387 "Size must be a map of `shortest_edge` and `longest_edge` or `height` and `width`."
388 );
389 };
390
391 Ok(image.resize_exact(w as u32, h as u32, resampling))
392 }
394
395fn split_image(
397 image: &DynamicImage,
398 longest_edge: usize,
399) -> Result<(Vec<DynamicImage>, usize, usize)> {
400 let (width, height) = image.dimensions();
401 let mut frames = Vec::new();
402
403 if width > longest_edge as u32 || height > longest_edge as u32 {
404 let num_splits_h = (height as f64 / (longest_edge as f64)).ceil() as usize;
405 let num_splits_w = (width as f64 / (longest_edge as f64)).ceil() as usize;
406
407 let optimal_height = (height as f64 / num_splits_h as f64).ceil() as u32;
408 let optimal_width = (width as f64 / num_splits_w as f64).ceil() as u32;
409
410 for r in 0..num_splits_h {
411 for c in 0..num_splits_w {
412 let start_x = (c as u32) * optimal_width;
413 let start_y = (r as u32) * optimal_height;
414
415 let end_x = std::cmp::min(start_x + optimal_width, width);
416 let end_y = std::cmp::min(start_y + optimal_height, height);
417
418 let cropped_image =
420 image.crop_imm(start_x, start_y, end_x - start_x, end_y - start_y);
421 frames.push(cropped_image);
422 }
423 }
424
425 let resized_image = resize(
427 image,
428 &HashMap::from([
429 ("height".to_string(), longest_edge as u32),
430 ("width".to_string(), longest_edge as u32),
431 ]),
432 FilterType::Lanczos3,
433 )?;
434 frames.push(resized_image);
435
436 Ok((frames, num_splits_h, num_splits_w))
437 } else {
438 frames.push(image.clone());
439 Ok((frames, 0, 0))
440 }
441}
442
443impl ImagePreProcessor for Idefics3ImageProcessor {
444 #[allow(clippy::excessive_precision)]
445 const DEFAULT_MEAN: [f64; 3] = [0.48145466, 0.4578275, 0.40821073];
446 #[allow(clippy::excessive_precision)]
447 const DEFAULT_STD: [f64; 3] = [0.26862954, 0.26130258, 0.27577711];
448
449 fn preprocess(
450 &self,
451 mut images: Vec<DynamicImage>,
452 videos: Vec<Vec<DynamicImage>>,
453 config: &PreProcessorConfig,
454 device: &Device,
455 (_bs, _max_num_images): (usize, usize),
456 ) -> Result<PreprocessedImages> {
457 assert!(videos.is_empty());
458
459 let mut patch_masks = Vec::new();
460 let mut pixel_values = Vec::new();
461
462 if let Some(max_edge) = self.max_edge {
463 images = mistralrs_vision::pad_to_max_edge(&images, max_edge);
464 }
465
466 for image in images.iter_mut() {
467 if config.do_convert_rgb.is_some_and(|x| x) {
469 *image = DynamicImage::ImageRgb8(image.to_rgb8());
470 }
471
472 if config.do_resize.is_some_and(|x| x) {
474 *image = resize(
475 image,
476 config.size.as_ref().unwrap(),
477 config.resampling.to_filter()?,
478 )?;
479 }
480 }
481
482 let mut image_rows = Vec::new();
483 let mut image_cols = Vec::new();
484 let mut new_images = Vec::new();
485 let max_image_size = config
486 .max_image_size
487 .clone()
488 .unwrap_or_else(|| HashMap::from([("longest_edge".to_string(), 364)]));
489 if config.do_image_splitting.unwrap_or(true) {
490 for image in images.iter_mut() {
494 let (new_h, new_w) = resize_for_vision_encoder(
495 (image.dimensions().1 as usize, image.dimensions().0 as usize),
496 max_image_size["longest_edge"] as usize,
497 );
498
499 *image =
500 image.resize_exact(new_w as u32, new_h as u32, config.resampling.to_filter()?);
501
502 let (split_image_array, rows, cols) =
503 split_image(image, max_image_size["longest_edge"] as usize)?;
504 new_images.extend(split_image_array.into_iter());
505 image_rows.push(rows);
506 image_cols.push(cols);
507 }
508 } else {
509 for image in images.iter_mut() {
511 new_images.push(resize(
512 image,
513 &HashMap::from([
514 ("height".to_string(), max_image_size["longest_edge"]),
515 ("width".to_string(), max_image_size["longest_edge"]),
516 ]),
517 FilterType::Lanczos3,
518 )?);
519 }
520 image_rows = vec![0; images.len()];
521 image_cols = vec![0; images.len()];
522 }
523 images = new_images;
524
525 let mut max_h = 0;
526 let mut max_w = 0;
527 for image in &images {
528 let (w, h) = image.dimensions();
529 if w > max_w {
530 max_w = w;
531 }
532 if h > max_h {
533 max_h = h;
534 }
535 }
536
537 for image in images.iter_mut() {
538 let transforms = Transforms {
539 input: &ToTensorNoNorm,
540 inner_transforms: &[
541 &config
542 .do_rescale
543 .is_some_and(|x| x)
544 .then_some(())
545 .map(|_| Rescale {
546 factor: config.rescale_factor,
547 }),
548 &config
549 .do_normalize
550 .is_some_and(|x| x)
551 .then_some(())
552 .map(|_| Normalize {
553 mean: config.image_mean.unwrap_or(Self::DEFAULT_MEAN).to_vec(),
554 std: config.image_std.unwrap_or(Self::DEFAULT_STD).to_vec(),
555 }),
556 ],
557 };
558
559 let mut image = image.apply(transforms, device)?;
560 if config.do_pad.is_some_and(|x| x) {
562 let (_c, h, w) = image.dims3()?;
563 let padded = mistralrs_vision::pad(&image, max_h as usize, max_w as usize)?;
564 let mask = mistralrs_vision::make_pixel_mask(&padded, h, w)?;
565 patch_masks.push(mask.unsqueeze(0)?);
566 image = padded;
567 }
568
569 pixel_values.push(image.unsqueeze(0)?)
571 }
572
573 Ok(PreprocessedImages {
574 pixel_values: Tensor::cat(&pixel_values, 0)?,
575 pixel_attention_mask: Some(Tensor::cat(&patch_masks, 0)?),
576 image_sizes: None,
577 num_img_tokens: None,
578 aspect_ratio_ids: None,
579 aspect_ratio_mask: None,
580 num_tiles: None,
581 image_grid_thw: None,
582 video_grid_thw: None,
583 rows: Some(image_rows),
584 cols: Some(image_cols),
585 pixel_values_list: None,
586 tgt_sizes: None,
587 image_sizes_all: None,
588 num_crops: None,
589 })
590 }
591}