mistralrs_core/vision_models/idefics3/
inputs_processor.rs

1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use std::{any::Any, cmp, collections::HashMap, num::NonZeroUsize, sync::Arc};
4
5use candle_core::{Device, Result, Tensor};
6use image::{imageops::FilterType, DynamicImage, GenericImageView};
7use mistralrs_vision::{ApplyTransforms, Normalize, Rescale, ToTensorNoNorm, Transforms};
8use tokenizers::Tokenizer;
9use tracing::warn;
10
11use crate::{
12    device_map::DeviceMapper,
13    pipeline::{
14        text_models_inputs_processor::{
15            self, get_completion_input, get_prompt_input, PagedAttentionMeta,
16        },
17        InputProcessorOutput, InputsProcessor, InputsProcessorType, MessagesAction, Processor,
18    },
19    sequence::Sequence,
20    vision_models::ModelInputs,
21};
22
23use crate::vision_models::{
24    image_processor::{ImagePreProcessor, PreprocessedImages},
25    preprocessor_config::{PreProcessorConfig, ToFilter},
26    processor_config::ProcessorConfig,
27};
28
29// 4k resolution as absolute maximum
30const MAX_IMAGE_SIZE: usize = 4096;
31const FAKE_IMAGE_TOKEN: &str = "<fake_token_around_image>";
32const IMAGE_TOKEN: &str = "<image>";
33const GLOBAL_IMAGE_TOKEN: &str = "<global-img>";
34
35pub struct Idefics3ImageProcessor {
36    max_edge: Option<u32>,
37    image_seq_len: usize,
38}
39
40pub struct Idefics3Processor {
41    config: ProcessorConfig,
42    max_edge: Option<u32>,
43}
44
45impl Idefics3Processor {
46    pub fn new(
47        config: ProcessorConfig,
48        _preprocessor_config: PreProcessorConfig,
49        max_edge: Option<u32>,
50    ) -> Self {
51        Self { config, max_edge }
52    }
53}
54
55impl Processor for Idefics3Processor {
56    fn inputs_processor(&self) -> Arc<dyn InputsProcessor> {
57        // Default image_seq_len is 169.
58        Arc::new(Idefics3ImageProcessor {
59            max_edge: self.max_edge,
60            image_seq_len: self.config.image_seq_len.unwrap_or(169),
61        })
62    }
63
64    fn get_special_tokens(&self) -> &[&'static str] {
65        &["<fake_token_around_image>", "<image>", "<end_of_utterance>"]
66    }
67
68    fn template_action(&self) -> MessagesAction {
69        MessagesAction::Keep
70    }
71}
72
73fn get_image_prompt_string(n_rows: usize, n_cols: usize, image_seq_len: usize) -> String {
74    if n_rows == 0 && n_cols == 0 {
75        format!(
76            "{FAKE_IMAGE_TOKEN}{GLOBAL_IMAGE_TOKEN}{}{FAKE_IMAGE_TOKEN}",
77            IMAGE_TOKEN.repeat(image_seq_len)
78        )
79    } else {
80        let mut text_split_images = String::new();
81        for n_h in 0..n_rows {
82            for n_w in 0..n_cols {
83                text_split_images.push_str(&format!(
84                    "{FAKE_IMAGE_TOKEN}<row_{}_col_{}>{}",
85                    n_h + 1,
86                    n_w + 1,
87                    IMAGE_TOKEN.repeat(image_seq_len)
88                ));
89            }
90            text_split_images.push('\n');
91        }
92        format!(
93            "{text_split_images}\n{FAKE_IMAGE_TOKEN}{GLOBAL_IMAGE_TOKEN}{}{FAKE_IMAGE_TOKEN}",
94            IMAGE_TOKEN.repeat(image_seq_len)
95        )
96    }
97}
98
99impl InputsProcessor for Idefics3ImageProcessor {
100    fn get_type(&self) -> InputsProcessorType {
101        InputsProcessorType::Vision
102    }
103    fn process_inputs(
104        &self,
105        tokenizer: Option<Arc<Tokenizer>>,
106        input_seqs: &mut [&mut Sequence],
107        is_prompt: bool,
108        is_xlora: bool,
109        device: &Device,
110        no_kv_cache: bool,
111        last_n_context_len: Option<(usize, usize)>,
112        return_raw_logits: bool,
113        other_config: Option<Arc<dyn Any>>,
114        mut paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
115        prompt_chunksize: Option<NonZeroUsize>,
116        mapper: Option<&dyn DeviceMapper>,
117    ) -> Box<dyn Iterator<Item = anyhow::Result<InputProcessorOutput>>> {
118        if is_xlora {
119            return Box::new(std::iter::once(Err(anyhow::Error::msg(
120                "Cannot make inputs for X-LoRA vision model.",
121            ))));
122        }
123        if no_kv_cache {
124            return Box::new(std::iter::once(Err(anyhow::Error::msg(
125                "Vision model must have kv cache.",
126            ))));
127        }
128        // TODO(EricLBuehler): support this? Would require some handling of image tokens.
129        if prompt_chunksize.is_some() {
130            warn!("`prompt_chunksize` is set. Idefics 3 does not support prompt batching.");
131        }
132        let Some(tokenizer) = tokenizer else {
133            return Box::new(std::iter::once(Err(anyhow::Error::msg(
134                "Idefics3ImageProcessor requires a specified tokenizer.",
135            ))));
136        };
137
138        let config = other_config.expect("Need a PreProcessorConfig config.");
139        let config: &PreProcessorConfig = config.downcast_ref().expect("Downcast failed.");
140
141        let has_images = input_seqs.iter().all(|seq| seq.has_images());
142
143        let (pixel_values, pixel_attention_mask) = if has_images {
144            let mut pixel_values_accum = Vec::new();
145            let mut pixel_attention_mask_accum = Vec::new();
146            for seq in input_seqs.iter_mut() {
147                let PreprocessedImages {
148                    pixel_values,
149                    pixel_attention_mask,
150                    image_sizes: _,
151                    num_img_tokens: _,
152                    aspect_ratio_ids: _,
153                    aspect_ratio_mask: _,
154                    num_tiles: _,
155                    image_grid_thw: _,
156                    video_grid_thw: _,
157                    rows,
158                    cols,
159                    pixel_values_list: _,
160                    tgt_sizes: _,
161                    image_sizes_all: _,
162                    num_crops: _,
163                } = self
164                    .preprocess(
165                        seq.take_images()
166                            .expect("Need to have images by this point."),
167                        vec![],
168                        config,
169                        device,
170                        (usize::MAX, usize::MAX), // Don't use it here...
171                    )
172                    .expect("Preprocessing failed");
173                pixel_values_accum.push(pixel_values.unsqueeze(0).unwrap());
174                pixel_attention_mask_accum
175                    .push(pixel_attention_mask.unwrap().unsqueeze(0).unwrap());
176
177                let detok = tokenizer
178                    .decode(seq.get_toks(), false)
179                    .expect("Detokenization failed!");
180
181                let mut image_prompt_strings = Vec::new();
182                for (n_rows, n_cols) in rows.unwrap().into_iter().zip(cols.unwrap().into_iter()) {
183                    let image_prompt_string =
184                        get_image_prompt_string(n_rows, n_cols, self.image_seq_len);
185                    image_prompt_strings.push(image_prompt_string);
186                }
187
188                let split_sample = detok.split(IMAGE_TOKEN).collect::<Vec<_>>();
189                let mut sample = split_sample
190                    .first()
191                    .expect("The image token <image> should be present in the text.")
192                    .to_string();
193                for (i, image_prompt_string) in image_prompt_strings.into_iter().enumerate() {
194                    sample.push_str(&format!("{image_prompt_string}{}", split_sample[i]));
195                }
196
197                seq.set_initial_prompt(sample.clone());
198                let toks = tokenizer
199                    .encode_fast(sample, false)
200                    .expect("Detokenization failed!");
201
202                let ids = toks.get_ids().to_vec();
203                seq.set_toks_and_reallocate(ids, paged_attn_metadata.as_mut());
204            }
205
206            (
207                Some(Tensor::cat(&pixel_values_accum, 0).unwrap()),
208                Some(Tensor::cat(&pixel_attention_mask_accum, 0).unwrap()),
209            )
210        } else {
211            (None, None)
212        };
213
214        let text_models_inputs_processor::InnerInputProcessorOutput {
215            inputs:
216                text_models_inputs_processor::InputMetadata {
217                    input,
218                    positions,
219                    context_lens,
220                    position_ids,
221                    paged_attn_meta,
222                    flash_meta,
223                },
224            seq_indices,
225        } = if is_prompt {
226            get_prompt_input(
227                input_seqs
228                    .iter()
229                    .map(|seq| seq.get_toks().to_vec())
230                    .collect::<Vec<_>>(),
231                input_seqs,
232                device,
233                last_n_context_len,
234                return_raw_logits,
235                paged_attn_metadata.as_mut(),
236                None, // TODO: evaluate if it is possible to batch this
237                mapper,
238            )
239            .nth(0)
240            .unwrap()
241            .unwrap()
242        } else {
243            get_completion_input(
244                input_seqs
245                    .iter()
246                    .map(|seq| seq.get_toks().to_vec())
247                    .collect::<Vec<_>>(),
248                input_seqs,
249                device,
250                no_kv_cache,
251                last_n_context_len,
252                return_raw_logits,
253                paged_attn_metadata.as_mut(),
254                None, // TODO: evaluate if it is possible to batch this
255                mapper,
256            )
257            .nth(0)
258            .unwrap()
259            .unwrap()
260        };
261
262        let inputs: Box<dyn Any> = Box::new(ModelInputs {
263            input_ids: input,
264            seqlen_offsets: positions,
265            context_lens,
266            position_ids,
267            pixel_values,
268            model_specific_args: Box::new(pixel_attention_mask),
269            paged_attn_meta,
270            flash_meta,
271        });
272        Box::new(std::iter::once(Ok(InputProcessorOutput {
273            inputs,
274            seq_indices,
275        })))
276    }
277}
278
279// Calculate output size after resizing, rescaling to max length
280fn resize_output_size_rescale_to_max_len(
281    height: usize,
282    width: usize,
283    min_len: Option<usize>,
284    max_len: Option<usize>,
285) -> (usize, usize) {
286    let min_len = min_len.unwrap_or(1);
287    let max_len = max_len.unwrap_or_else(|| cmp::max(height, width));
288    let aspect_ratio = width as f32 / height as f32;
289    let (mut height, mut width) = (height, width);
290
291    if width >= height {
292        width = max_len;
293        height = (width as f32 / aspect_ratio).round() as usize;
294        if height % 2 != 0 {
295            height += 1;
296        }
297    } else {
298        height = max_len;
299        width = (height as f32 * aspect_ratio).round() as usize;
300        if width % 2 != 0 {
301            width += 1;
302        }
303    }
304
305    height = cmp::max(height, min_len);
306    width = cmp::max(width, min_len);
307
308    (height, width)
309}
310
311// Calculate output size after resizing, scaling below upper bound
312fn resize_output_size_scale_below_upper_bound(
313    height: usize,
314    width: usize,
315    max_len: Option<usize>,
316) -> (usize, usize) {
317    let max_len = max_len.unwrap_or_else(|| cmp::max(height, width));
318    let aspect_ratio = width as f32 / height as f32;
319    let (mut height, mut width) = (height, width);
320
321    if width >= height && width > max_len {
322        width = max_len;
323        height = (width as f32 / aspect_ratio).round() as usize;
324    } else if height > width && height > max_len {
325        height = max_len;
326        width = (height as f32 * aspect_ratio).round() as usize;
327    }
328
329    height = cmp::max(height, 1);
330    width = cmp::max(width, 1);
331
332    (height, width)
333}
334
335/// Given the image sizes (h, w) and the minimum and maximum lengths, calculate the image dimensions
336/// which will preserve aspect ration while respecing the minimum and maximum lengths.
337fn get_resize_output_image_size(
338    (h, w): (usize, usize),
339    resolution_max_side: usize,
340) -> (usize, usize) {
341    let (h, w) = resize_output_size_rescale_to_max_len(h, w, None, Some(resolution_max_side));
342    resize_output_size_scale_below_upper_bound(h, w, Some(MAX_IMAGE_SIZE))
343}
344
345fn resize_for_vision_encoder(
346    (h, w): (usize, usize),
347    vision_encoder_max_size: usize,
348) -> (usize, usize) {
349    let aspect_ratio = w as f32 / h as f32;
350
351    let (new_h, new_w) = if w >= h {
352        let new_w = ((w as f32 / vision_encoder_max_size as f32).ceil()
353            * vision_encoder_max_size as f32) as usize;
354        let mut new_h = (new_w as f32 / aspect_ratio) as usize;
355        new_h = ((new_h as f32 / vision_encoder_max_size as f32).ceil()
356            * vision_encoder_max_size as f32) as usize;
357        (new_h, new_w)
358    } else {
359        let new_h = ((h as f32 / vision_encoder_max_size as f32).ceil()
360            * vision_encoder_max_size as f32) as usize;
361        let mut new_w = (new_h as f32 * aspect_ratio) as usize;
362        new_w = ((new_w as f32 / vision_encoder_max_size as f32).ceil()
363            * vision_encoder_max_size as f32) as usize;
364        (new_h, new_w)
365    };
366
367    (new_h, new_w)
368}
369
370fn resize(
371    image: &DynamicImage,
372    size: &HashMap<String, u32>,
373    resampling: FilterType,
374) -> Result<DynamicImage> {
375    let (h, w) = if size.contains_key("longest_edge") {
376        get_resize_output_image_size(
377            (image.dimensions().1 as usize, image.dimensions().0 as usize),
378            size["longest_edge"] as usize,
379        )
380    } else if size.contains_key("height") && size.contains_key("width") {
381        (size["height"] as usize, size["width"] as usize)
382    } else {
383        candle_core::bail!(
384            "Size must be a map of `shortest_edge` and `longest_edge` or `height` and `width`."
385        );
386    };
387
388    Ok(image.resize_exact(w as u32, h as u32, resampling))
389    // Ok(image.resize_exact(w as u32, h as u32,  FilterType::Nearest))
390}
391
392/// Returns: frames, num_splits_h, num_splits_w
393fn split_image(
394    image: &DynamicImage,
395    longest_edge: usize,
396) -> Result<(Vec<DynamicImage>, usize, usize)> {
397    let (width, height) = image.dimensions();
398    let mut frames = Vec::new();
399
400    if width > longest_edge as u32 || height > longest_edge as u32 {
401        let num_splits_h = (height as f64 / (longest_edge as f64)).ceil() as usize;
402        let num_splits_w = (width as f64 / (longest_edge as f64)).ceil() as usize;
403
404        let optimal_height = (height as f64 / num_splits_h as f64).ceil() as u32;
405        let optimal_width = (width as f64 / num_splits_w as f64).ceil() as u32;
406
407        for r in 0..num_splits_h {
408            for c in 0..num_splits_w {
409                let start_x = (c as u32) * optimal_width;
410                let start_y = (r as u32) * optimal_height;
411
412                let end_x = std::cmp::min(start_x + optimal_width, width);
413                let end_y = std::cmp::min(start_y + optimal_height, height);
414
415                // Crop the image
416                let cropped_image =
417                    image.crop_imm(start_x, start_y, end_x - start_x, end_y - start_y);
418                frames.push(cropped_image);
419            }
420        }
421
422        // Resize the original image to match `longest_edge` for global efficiency
423        let resized_image = resize(
424            image,
425            &HashMap::from([
426                ("height".to_string(), longest_edge as u32),
427                ("width".to_string(), longest_edge as u32),
428            ]),
429            FilterType::Lanczos3,
430        )?;
431        frames.push(resized_image);
432
433        Ok((frames, num_splits_h, num_splits_w))
434    } else {
435        frames.push(image.clone());
436        Ok((frames, 0, 0))
437    }
438}
439
440impl ImagePreProcessor for Idefics3ImageProcessor {
441    #[allow(clippy::excessive_precision)]
442    const DEFAULT_MEAN: [f64; 3] = [0.48145466, 0.4578275, 0.40821073];
443    #[allow(clippy::excessive_precision)]
444    const DEFAULT_STD: [f64; 3] = [0.26862954, 0.26130258, 0.27577711];
445
446    fn preprocess(
447        &self,
448        mut images: Vec<DynamicImage>,
449        videos: Vec<Vec<DynamicImage>>,
450        config: &PreProcessorConfig,
451        device: &Device,
452        (_bs, _max_num_images): (usize, usize),
453    ) -> Result<PreprocessedImages> {
454        assert!(videos.is_empty());
455
456        let mut patch_masks = Vec::new();
457        let mut pixel_values = Vec::new();
458
459        if let Some(max_edge) = self.max_edge {
460            images = mistralrs_vision::pad_to_max_edge(&images, max_edge);
461        }
462
463        for image in images.iter_mut() {
464            // Convert to rgb
465            if config.do_convert_rgb.is_some_and(|x| x) {
466                *image = DynamicImage::ImageRgb8(image.to_rgb8());
467            }
468
469            // Resize
470            if config.do_resize.is_some_and(|x| x) {
471                *image = resize(
472                    image,
473                    config.size.as_ref().unwrap(),
474                    config.resampling.to_filter()?,
475                )?;
476            }
477        }
478
479        let mut image_rows = Vec::new();
480        let mut image_cols = Vec::new();
481        let mut new_images = Vec::new();
482        let max_image_size = config
483            .max_image_size
484            .clone()
485            .unwrap_or_else(|| HashMap::from([("longest_edge".to_string(), 364)]));
486        if config.do_image_splitting.unwrap_or(true) {
487            // We first resize both height and width of each image to the nearest max_image_size multiple, disregarding the aspect ratio
488            // for size=(10, max_image_size) -> rescaled_size=(max_image_size, max_image_size)
489            // for size=(11, max_image_size+1) -> rescaled_size=(max_image_size, max_image_size*2)
490            for image in images.iter_mut() {
491                let (new_h, new_w) = resize_for_vision_encoder(
492                    (image.dimensions().1 as usize, image.dimensions().0 as usize),
493                    max_image_size["longest_edge"] as usize,
494                );
495
496                *image =
497                    image.resize_exact(new_w as u32, new_h as u32, config.resampling.to_filter()?);
498
499                let (split_image_array, rows, cols) =
500                    split_image(image, max_image_size["longest_edge"] as usize)?;
501                new_images.extend(split_image_array.into_iter());
502                image_rows.push(rows);
503                image_cols.push(cols);
504            }
505        } else {
506            // We square the images to max_image_size
507            for image in images.iter_mut() {
508                new_images.push(resize(
509                    image,
510                    &HashMap::from([
511                        ("height".to_string(), max_image_size["longest_edge"]),
512                        ("width".to_string(), max_image_size["longest_edge"]),
513                    ]),
514                    FilterType::Lanczos3,
515                )?);
516            }
517            image_rows = vec![0; images.len()];
518            image_cols = vec![0; images.len()];
519        }
520        images = new_images;
521
522        let mut max_h = 0;
523        let mut max_w = 0;
524        for image in &images {
525            let (w, h) = image.dimensions();
526            if w > max_w {
527                max_w = w;
528            }
529            if h > max_h {
530                max_h = h;
531            }
532        }
533
534        for image in images.iter_mut() {
535            let transforms = Transforms {
536                input: &ToTensorNoNorm,
537                inner_transforms: &[
538                    &config
539                        .do_rescale
540                        .is_some_and(|x| x)
541                        .then_some(())
542                        .map(|_| Rescale {
543                            factor: config.rescale_factor,
544                        }),
545                    &config
546                        .do_normalize
547                        .is_some_and(|x| x)
548                        .then_some(())
549                        .map(|_| Normalize {
550                            mean: config.image_mean.unwrap_or(Self::DEFAULT_MEAN).to_vec(),
551                            std: config.image_std.unwrap_or(Self::DEFAULT_STD).to_vec(),
552                        }),
553                ],
554            };
555
556            let mut image = image.apply(transforms, device)?;
557            // Pad images, calculating attention mask.
558            if config.do_pad.is_some_and(|x| x) {
559                let (_c, h, w) = image.dims3()?;
560                let padded = mistralrs_vision::pad(&image, max_h as usize, max_w as usize)?;
561                let mask = mistralrs_vision::make_pixel_mask(&padded, h, w)?;
562                patch_masks.push(mask.unsqueeze(0)?);
563                image = padded;
564            }
565
566            // Get pixel values
567            pixel_values.push(image.unsqueeze(0)?)
568        }
569
570        Ok(PreprocessedImages {
571            pixel_values: Tensor::cat(&pixel_values, 0)?,
572            pixel_attention_mask: Some(Tensor::cat(&patch_masks, 0)?),
573            image_sizes: None,
574            num_img_tokens: None,
575            aspect_ratio_ids: None,
576            aspect_ratio_mask: None,
577            num_tiles: None,
578            image_grid_thw: None,
579            video_grid_thw: None,
580            rows: Some(image_rows),
581            cols: Some(image_cols),
582            pixel_values_list: None,
583            tgt_sizes: None,
584            image_sizes_all: None,
585            num_crops: None,
586        })
587    }
588}