mistralrs_core/vision_models/llava/
llava_inputs_processor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
use std::any::Any;
use std::num::NonZeroUsize;
use std::sync::Arc;

use candle_core::Result;
use candle_core::{DType, Device, Tensor};
use image::GenericImageView;
use image::Rgb;
use itertools::Itertools;
use regex_automata::meta::Regex;
use tokenizers::Tokenizer;
use tracing::warn;

use super::llava15::LLaVAVisionSpecificArgs;
use super::utils::{expand2square, LLaVAImageProcessor};
use crate::device_map::DeviceMapper;
use crate::pipeline::text_models_inputs_processor::{
    get_completion_input, get_prompt_input, PagedAttentionMeta,
};
use crate::pipeline::{
    text_models_inputs_processor, InputProcessorOutput, InputsProcessor, InputsProcessorType,
    MessagesAction, Processor,
};
use crate::sequence::Sequence;
use crate::vision_models::image_processor::{self, ImagePreProcessor, PreprocessedImages};
use crate::vision_models::llava::config::Config as LLaVAConfig;
use crate::vision_models::preprocessor_config::{PreProcessorConfig, ToFilter};
use crate::vision_models::{preprocessor_config, ModelInputs};

pub struct LLaVAProcessor {
    inputs_processor: Arc<LLaVAInputProcessor>,
}

impl Processor for LLaVAProcessor {
    fn inputs_processor(&self) -> Arc<dyn InputsProcessor> {
        self.inputs_processor.clone()
    }
    fn get_special_tokens(&self) -> &[&'static str] {
        &[]
    }
    fn template_action(&self) -> MessagesAction {
        MessagesAction::FlattenOnlyText
    }
}

impl LLaVAProcessor {
    pub fn new(config: &str) -> Self {
        let model_config =
            serde_json::from_str::<LLaVAConfig>(config).expect("Failed to parse model config.");
        let image_tag_splitter = Regex::new(r"<image>").expect("Failed to compile split regex.");
        let inputs_processor = Arc::new(LLaVAInputProcessor {
            image_tag_splitter,
            model_config: model_config.clone(),
        });
        Self { inputs_processor }
    }
}

pub struct LLaVAInputProcessor {
    image_tag_splitter: Regex,
    model_config: LLaVAConfig,
}

impl LLaVAInputProcessor {
    fn get_num_image_tokens(&self) -> usize {
        let patch_size = self.model_config.vision_config.patch_size;
        let patch_per_side = self.model_config.vision_config.image_size / patch_size;
        patch_per_side * patch_per_side
    }
}

// Copy from phi3_inputs_processor. different is (1) calculate of num_image_token (2) process_anyres_image (3)image_ids_pad
impl InputsProcessor for LLaVAInputProcessor {
    fn get_type(&self) -> InputsProcessorType {
        InputsProcessorType::Vision
    }
    fn process_inputs(
        &self,
        tokenizer: Option<Arc<Tokenizer>>,
        input_seqs: &mut [&mut Sequence],
        is_prompt: bool,
        is_xlora: bool,
        device: &Device,
        no_kv_cache: bool,
        last_n_context_len: Option<(usize, usize)>,
        return_raw_logits: bool,
        other_config: Option<Arc<dyn Any>>,
        mut paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
        prompt_batchsize: Option<NonZeroUsize>,
        _mapper: Option<&dyn DeviceMapper>,
    ) -> Box<dyn Iterator<Item = anyhow::Result<InputProcessorOutput>>> {
        if is_xlora {
            return Box::new(std::iter::once(Err(anyhow::Error::msg(
                "Cannot make inputs for X-LoRA vision model.",
            ))));
        }
        if no_kv_cache {
            return Box::new(std::iter::once(Err(anyhow::Error::msg(
                "Vision model must have kv cache.",
            ))));
        }
        // TODO(EricLBuehler): support this? Would require some handling of image tokens.
        if prompt_batchsize.is_some() {
            warn!("`prompt_batchsize` is set. Idefics 2 does not support prompt batching.");
        }
        let Some(tokenizer) = tokenizer else {
            return Box::new(std::iter::once(Err(anyhow::Error::msg(
                "LLaVAInputProcessor requires a specified tokenizer.",
            ))));
        };

        let config = other_config
            .clone()
            .expect("Need a PreProcessorConfig config.");
        let config: &PreProcessorConfig = config.downcast_ref().expect("Downcast failed.");

        let has_images = input_seqs
            .iter()
            .all(|seq| seq.images().is_some_and(|images| !images.is_empty()));

        let (pixel_values, num_img_tokens) = if has_images {
            let mut pixel_values_accum = Vec::new();
            let mut num_img_tokens_accum = Vec::new();
            for seq in input_seqs.iter_mut() {
                let imgs = seq
                    .take_images()
                    .expect("Need to have images by this point.");
                let PreprocessedImages {
                    pixel_values,
                    pixel_attention_mask: _,
                    image_sizes: _,
                    num_img_tokens,
                    aspect_ratio_ids: _,
                    aspect_ratio_mask: _,
                    num_tiles: _,
                    image_grid_thw: _,
                    video_grid_thw: _,
                    rows: _,
                    cols: _,
                } = self
                    .preprocess(
                        imgs.clone(),
                        vec![],
                        config,
                        device,
                        (usize::MAX, usize::MAX),
                    )
                    .expect("Preprocessor failed");
                pixel_values_accum.push(pixel_values);
                num_img_tokens_accum.push(num_img_tokens.unwrap());
            }
            (
                Some(Tensor::cat(&pixel_values_accum, 0).unwrap()),
                Some(num_img_tokens_accum),
            )
        } else {
            return Box::new(
                text_models_inputs_processor::TextInputsProcessor
                    .process_inputs(
                        Some(tokenizer),
                        input_seqs,
                        is_prompt,
                        is_xlora,
                        device,
                        no_kv_cache,
                        last_n_context_len,
                        return_raw_logits,
                        other_config,
                        paged_attn_metadata,
                        None, // TODO
                        None,
                    )
                    .map(|metadata| {
                        let InputProcessorOutput {
                            inputs,
                            seq_indices,
                        } = metadata?;

                        let text_models_inputs_processor::ModelInputs {
                            input_ids,
                            input_ids_full: _,
                            seqlen_offsets,
                            seqlen_offsets_full: _,
                            seqlen_offsets_kernel,
                            seqlen_offsets_kernel_full: _,
                            context_lens,
                            position_ids,
                            paged_attn_meta,
                            flash_meta,
                            flash_meta_full: _,
                        } = *inputs
                            .downcast::<text_models_inputs_processor::ModelInputs>()
                            .expect("Downcast failed.");

                        let inputs: Box<dyn Any> = Box::new(ModelInputs {
                            input_ids,
                            seqlen_offsets,
                            seqlen_offsets_kernel,
                            context_lens,
                            position_ids,
                            pixel_values: None,
                            model_specific_args: Box::new(LLaVAVisionSpecificArgs {}),
                            paged_attn_meta,
                            flash_meta,
                        });
                        Ok(InputProcessorOutput {
                            inputs,
                            seq_indices,
                        })
                    }),
            );
        };

        let mut toks = Vec::new();
        let detokenized = tokenizer
            .decode_batch(
                &input_seqs
                    .iter()
                    .map(|seq| seq.get_toks())
                    .collect::<Vec<_>>(),
                false,
            )
            .expect("Decoding failed");

        for (detokenized, (seq, num_img_tokens)) in detokenized.into_iter().zip(
            input_seqs
                .iter_mut()
                .zip(num_img_tokens.unwrap().into_iter()),
        ) {
            let splits = self
                .image_tag_splitter
                .split(&detokenized)
                .map(|span| &detokenized[span.range()])
                .collect::<Vec<_>>();
            let prompt_chunks = splits
                .iter()
                .map(|s| {
                    // we don't use encode_batch here, because encode_batch will pad 0 to the end of the shor sequences, which will cause the image_ids_pad to be wrong.
                    tokenizer
                        .encode(*s, true)
                        .unwrap()
                        .get_ids()
                        .to_vec()
                        .iter()
                        .map(|x| *x as i64)
                        .collect()
                })
                .collect::<Vec<Vec<_>>>();
            let mut image_ids_pad = Vec::new();
            for (i, num_img_token) in num_img_tokens.iter().enumerate() {
                let mut image_id_pad = vec![0; *num_img_token];
                image_id_pad[0] = -(i as i64 + 1);
                image_ids_pad.push(image_id_pad);
            }
            let mut input_ids: Vec<i64> = Vec::new();
            for item in prompt_chunks
                .iter()
                .map(|x| x.to_vec())
                .interleave(image_ids_pad)
            {
                input_ids.extend(item);
            }
            // NOTE(EricLBuehler): Casting to u32 is fine, we don't care about the other toks
            seq.set_toks(
                input_ids
                    .iter()
                    .map(|x| if *x < 0 { 0u32 } else { *x as u32 })
                    .collect::<Vec<_>>(),
            );
            if let Some(ref mut metadata) = paged_attn_metadata {
                // Free and then reallocate as appropriate
                metadata.block_engine.free_sequence(*seq.id());
                metadata.block_engine.allocate(*seq);
            }

            toks.push(input_ids);
        }

        let iter = if is_prompt {
            get_prompt_input(
                toks,
                input_seqs,
                device,
                last_n_context_len,
                return_raw_logits,
                paged_attn_metadata.as_mut(),
                None, // TODO: evaluate if it is possible to batch this
                None,
            )
        } else {
            get_completion_input(
                toks,
                input_seqs,
                device,
                no_kv_cache,
                last_n_context_len,
                return_raw_logits,
                paged_attn_metadata.as_mut(),
                None, // TODO: evaluate if it is possible to batch this
                None,
            )
        };

        Box::new(iter.into_iter().map(move |metadata| {
            let text_models_inputs_processor::InnerInputProcessorOutput {
                inputs:
                    text_models_inputs_processor::InputMetadata {
                        input,
                        positions,
                        positions_kernel,
                        context_lens,
                        position_ids,
                        paged_attn_meta,
                        flash_meta,
                    },
                seq_indices,
            } = metadata?;
            let inputs: Box<dyn Any> = Box::new(ModelInputs {
                input_ids: input,
                seqlen_offsets: positions,
                seqlen_offsets_kernel: positions_kernel,
                context_lens,
                position_ids,
                pixel_values: pixel_values.clone(),
                model_specific_args: Box::new(LLaVAVisionSpecificArgs {}),
                paged_attn_meta,
                flash_meta,
            });
            Ok(InputProcessorOutput {
                inputs,
                seq_indices,
            })
        }))
    }
}

impl ImagePreProcessor for LLaVAInputProcessor {
    #[allow(clippy::excessive_precision)]
    const DEFAULT_MEAN: [f64; 3] = [0.48145466, 0.4578275, 0.40821073];
    #[allow(clippy::excessive_precision)]
    const DEFAULT_STD: [f64; 3] = [0.26862954, 0.26130258, 0.27577711];
    fn preprocess(
        &self,
        images: Vec<image::DynamicImage>,
        videos: Vec<Vec<image::DynamicImage>>,
        config: &preprocessor_config::PreProcessorConfig,
        device: &candle_core::Device,
        (_, _): (usize, usize),
    ) -> candle_core::Result<image_processor::PreprocessedImages> {
        if images.len() > 1 {
            candle_core::bail!("Can only process one image per batch"); // This is no different from phi3_input_processor
        };
        assert!(videos.is_empty());
        let resized_size = *config.size.as_ref().unwrap().get("shortest_edge").unwrap() as usize;

        let original_size = images[0].dimensions();
        let filter = config.resampling.to_filter()?;
        let image_mean = config
            .image_mean
            .unwrap_or(Self::DEFAULT_MEAN)
            .map(|x| x as f32);
        let mean_color = image_mean
            .iter()
            .map(|x| ((*x) * 255.0) as u8)
            .collect::<Vec<u8>>();
        let mean_color = Rgb::from([mean_color[0], mean_color[1], mean_color[2]]);
        let image = expand2square(&images[0], mean_color);
        let image_std = config
            .image_std
            .unwrap_or(Self::DEFAULT_STD)
            .map(|x| x as f32);
        let pixel_values = [image]
            .iter()
            .map(|x| {
                LLaVAImageProcessor::process_one_image(
                    x,
                    config,
                    resized_size as u32,
                    filter,
                    DType::BF16,
                    device,
                    &image_mean,
                    &image_std,
                )
            })
            .collect::<Result<Vec<Tensor>>>()?;
        let pixel_values = Tensor::stack(&pixel_values, 0)?;

        Ok(image_processor::PreprocessedImages {
            pixel_values,
            pixel_attention_mask: None,
            image_sizes: Some((original_size.0 as usize, original_size.1 as usize)),
            num_img_tokens: Some(vec![self.get_num_image_tokens()]),
            aspect_ratio_ids: None,
            aspect_ratio_mask: None,
            num_tiles: None,
            image_grid_thw: None,
            video_grid_thw: None,
            rows: None,
            cols: None,
        })
    }
}