mistralrs_core/vision_models/llava/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#![allow(
    clippy::cast_possible_truncation,
    clippy::cast_precision_loss,
    clippy::too_many_arguments
)]
use crate::vision_models::preprocessor_config::PreProcessorConfig;
use candle_core::{DType, Device, Result, Tensor};
use image::{
    imageops::{overlay, FilterType},
    DynamicImage, GenericImageView, Rgb, RgbImage,
};
use std::cmp::min;

pub(crate) fn get_anyres_image_grid_shape(
    image_size: (u32, u32),
    grid_pinpoints: &[(u32, u32)],
    patch_size: u32,
) -> (u32, u32) {
    let (width, height) = select_best_resolution(image_size, grid_pinpoints);
    (width / patch_size, height / patch_size)
}

pub(crate) fn get_num_samples(
    image_size: (u32, u32),
    grid_pinpoints: &[(u32, u32)],
    crop_size: (u32, u32),
) -> u32 {
    let (width, height) = select_best_resolution(image_size, grid_pinpoints);
    width / crop_size.0 * height / crop_size.1 + 1
}

pub(crate) fn select_best_resolution(
    original_size: (u32, u32),
    possible_resolutions: &[(u32, u32)],
) -> (u32, u32) {
    let (original_width, original_height) = original_size;
    let mut best_fit = (0, 0);
    let original_width_f = original_width as f32;
    let original_height_f = original_height as f32;
    let mut max_effective_resolution = 0_u32;
    let mut min_wasted_resolution = u32::MAX;
    for (width, height) in possible_resolutions {
        let width_f = *width as f32;
        let height_f = *height as f32;
        let scale = (width_f / original_width_f).min(height_f / original_height_f);
        let (downscaled_width, downscaled_height) = (
            (original_width_f * scale) as u32,
            (original_height_f * scale) as u32,
        );
        let effective_resolution =
            std::cmp::min((*width) * (*height), downscaled_width * downscaled_height);
        let wasted_resolution = (*width) * (*height) - effective_resolution;
        if effective_resolution > max_effective_resolution
            || (effective_resolution == max_effective_resolution
                && wasted_resolution < min_wasted_resolution)
        {
            best_fit = (*width, *height);
            max_effective_resolution = effective_resolution;
            min_wasted_resolution = wasted_resolution;
        }
    }
    best_fit
}

pub(crate) fn calculate_unpad(size: (u32, u32), original_size: (u32, u32)) -> (u32, u32) {
    let (original_width, original_height) = original_size;
    let (current_width, current_height) = size;
    let original_aspect_ratio = (original_width as f32) / (original_height as f32);
    let current_aspect_ratio = (current_width as f32) / (current_height as f32);
    if original_aspect_ratio > current_aspect_ratio {
        let scale_factor = (current_width as f32) / (original_width as f32);
        let new_height = (original_height as f32 * scale_factor).floor() as u32;
        let padding = (current_height - new_height) / 2;
        (current_width, current_height - 2 * padding) // as it is in unpad_image
    } else {
        let scale_factor = (current_height as f32) / (original_height as f32);
        let new_width = (original_width as f32 * scale_factor).floor() as u32;
        let padding = (current_width - new_width) / 2;
        (current_width - 2 * padding, current_height)
    }
}

pub(crate) fn resize_and_pad_image(
    image: &DynamicImage,
    target_resolution: (u32, u32),
) -> DynamicImage {
    let (original_width, original_height) = image.dimensions();
    let original_width_f = original_width as f32;
    let original_height_f = original_height as f32;
    let (target_width, target_height) = target_resolution;
    let target_width_f = target_width as f32;
    let target_height_f = target_height as f32;
    let scale_w = target_width_f / original_width_f;
    let scale_h = target_height_f / original_height_f;
    let (new_width, new_height) = if scale_w < scale_h {
        (
            target_width,
            min((original_height_f * scale_w).ceil() as u32, target_height),
        )
    } else {
        (
            min((original_width_f * scale_h).ceil() as u32, target_width),
            target_height,
        )
    };
    let resized_image = image.resize_exact(
        new_width,
        new_height,
        image::imageops::FilterType::CatmullRom,
    );
    let mut new_image = DynamicImage::new_rgb8(target_width, target_height);
    let (paste_x, paste_y) =
        calculate_middle((target_width, target_height), (new_width, new_height));
    overlay(
        &mut new_image,
        &resized_image,
        paste_x.into(),
        paste_y.into(),
    );
    new_image
}

pub(crate) fn divide_to_samples(image: &DynamicImage, crop_size: (u32, u32)) -> Vec<DynamicImage> {
    let (width, height) = image.dimensions();
    let mut samples = Vec::new();
    for y in (0..height).step_by(crop_size.1 as usize) {
        for x in (0..width).step_by(crop_size.0 as usize) {
            let patch = image.crop_imm(x, y, crop_size.0, crop_size.1);
            samples.push(patch);
        }
    }
    samples
}

pub(crate) fn calculate_middle(image_size: (u32, u32), center_size: (u32, u32)) -> (u32, u32) {
    let (width, height) = image_size;
    let (center_width, center_height) = center_size;
    let left = if width <= center_width {
        0
    } else {
        ((width as f32 - center_width as f32) / 2.0).ceil() as u32
    };
    let top = if height <= center_height {
        0
    } else {
        ((height as f32 - center_height as f32) / 2.0).ceil() as u32
    };
    (left, top)
}

pub(crate) fn expand2square(image: &DynamicImage, background_color: Rgb<u8>) -> DynamicImage {
    let (width, height) = image.dimensions();
    match width.cmp(&height) {
        std::cmp::Ordering::Less => {
            let mut new_image =
                DynamicImage::from(RgbImage::from_pixel(height, height, background_color));
            overlay(&mut new_image, image, ((height - width) / 2) as i64, 0);
            new_image
        }
        std::cmp::Ordering::Equal => image.clone(),
        std::cmp::Ordering::Greater => {
            let mut new_image =
                DynamicImage::from(RgbImage::from_pixel(width, width, background_color));
            overlay(&mut new_image, image, 0, ((width - height) / 2) as i64);
            new_image
        }
    }
}

pub struct LLaVAImageProcessor;

impl LLaVAImageProcessor {
    fn resize(image: &DynamicImage, size: u32, filter: FilterType) -> DynamicImage {
        let (width, height) = image.dimensions();
        if width == size && height == size {
            image.clone()
        } else {
            let (new_width, new_height) = if width < height {
                (
                    size,
                    (((size * height) as f32) / width as f32).ceil() as u32,
                )
            } else {
                (
                    (((size * width) as f32) / height as f32).ceil() as u32,
                    size,
                )
            };
            image.resize(new_width, new_height, filter)
        }
    }

    fn center_crop(image: &DynamicImage, crop_size: (u32, u32)) -> DynamicImage {
        let (width, height) = image.dimensions();
        let (left, top) = calculate_middle((width, height), crop_size);
        image.crop_imm(left, top, crop_size.0, crop_size.1)
    }

    fn rescale(tensor: &Tensor, rescale_factor: f64) -> Result<Tensor> {
        tensor.affine(rescale_factor, 0.0)
    }

    fn to_tensor(image: &DynamicImage, device: &Device) -> Result<Tensor> {
        let img = image.to_rgb8().into_raw();
        let (width, height) = image.dimensions();
        Tensor::from_vec(img, (height as usize, width as usize, 3), device)?.to_dtype(DType::F32)
    }

    fn normalize(tensor: &Tensor, image_mean: &[f32], image_std: &[f32]) -> Result<Tensor> {
        let mean = Tensor::from_slice(image_mean, (3,), &Device::Cpu)?;
        let std = Tensor::from_slice(image_std, (3,), &Device::Cpu)?;
        tensor.broadcast_sub(&mean)?.broadcast_div(&std)
    }

    fn to_channel_dimension_format(tensor: &Tensor) -> Result<Tensor> {
        tensor.permute((2, 0, 1))
    }
    pub fn process_one_image(
        image: &DynamicImage,
        preprocessor_config: &PreProcessorConfig,
        resize_size: u32,
        filter: FilterType,
        dtype: DType,
        device: &Device,
        image_mean: &[f32],
        image_std: &[f32],
    ) -> Result<Tensor> {
        let mut image = if preprocessor_config.do_resize.unwrap_or(true) {
            Self::resize(image, resize_size, filter)
        } else {
            image.clone()
        };
        image = if preprocessor_config.do_center_crop.unwrap_or(true) {
            let crop_width = *preprocessor_config
                .crop_size
                .as_ref()
                .unwrap()
                .get("width")
                .unwrap();
            let crop_height = *preprocessor_config
                .crop_size
                .as_ref()
                .unwrap()
                .get("height")
                .unwrap();
            Self::center_crop(&image, (crop_width, crop_height))
        } else {
            image
        };
        let mut pixel_value = Self::to_tensor(&image, &Device::Cpu)?;
        if preprocessor_config.do_rescale.unwrap_or(true) {
            let rescale_factor = preprocessor_config.rescale_factor.unwrap();
            pixel_value = Self::rescale(&pixel_value, rescale_factor)?;
        }
        if preprocessor_config.do_normalize.unwrap_or(true) {
            pixel_value = Self::normalize(&pixel_value, image_mean, image_std)?;
        }
        Self::to_channel_dimension_format(&pixel_value)?
            .to_dtype(dtype)?
            .to_device(device)
    }
}