mistralrs_core/vision_models/mistral3/
inputs_processor.rs

1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use std::{any::Any, num::NonZeroUsize, sync::Arc};
4
5use candle_core::{Device, Result, Tensor};
6use image::{imageops::FilterType, DynamicImage, GenericImageView};
7use mistralrs_vision::{ApplyTransforms, Normalize, Rescale, ToTensorNoNorm, Transforms};
8use tokenizers::Tokenizer;
9use tracing::warn;
10
11use crate::{
12    device_map::DeviceMapper,
13    pipeline::{
14        text_models_inputs_processor::{
15            self, get_completion_input, get_prompt_input, PagedAttentionMeta,
16        },
17        InputProcessorOutput, InputsProcessor, InputsProcessorType, MessagesAction, Processor,
18    },
19    sequence::Sequence,
20    vision_models::{
21        image_processor::{ImagePreProcessor, PreprocessedImages},
22        preprocessor_config::{PreProcessorConfig, ToFilter},
23        processor_config::ProcessorConfig,
24        ModelInputs,
25    },
26};
27
28use super::Mistral3SpecificArgs;
29
30const PLACEHOLDER: &str = "<placeholder>";
31
32struct Mistral3ImageProcessor {
33    image_break_token: String,
34    image_end_token: String,
35    image_token: String,
36    patch_size: usize,
37    spatial_merge_size: usize,
38}
39
40pub struct Mistral3Processor {
41    image_break_token: String,
42    image_end_token: String,
43    image_token: String,
44    patch_size: usize,
45    spatial_merge_size: usize,
46}
47
48impl Mistral3Processor {
49    pub fn new(processor_config: ProcessorConfig) -> Self {
50        Self {
51            image_break_token: processor_config.image_break_token.unwrap().clone(),
52            image_end_token: processor_config.image_end_token.unwrap().clone(),
53            image_token: processor_config.image_token.unwrap().clone(),
54            patch_size: processor_config.patch_size.unwrap(),
55            spatial_merge_size: processor_config.spatial_merge_size.unwrap(),
56        }
57    }
58}
59
60impl Processor for Mistral3Processor {
61    fn inputs_processor(&self) -> Arc<dyn InputsProcessor> {
62        Arc::new(Mistral3ImageProcessor {
63            image_break_token: self.image_break_token.clone(),
64            image_end_token: self.image_end_token.clone(),
65            image_token: self.image_token.clone(),
66            patch_size: self.patch_size,
67            spatial_merge_size: self.spatial_merge_size,
68        })
69    }
70
71    fn get_special_tokens(&self) -> &[&'static str] {
72        &[]
73    }
74
75    fn template_action(&self) -> MessagesAction {
76        MessagesAction::Keep
77    }
78}
79
80impl InputsProcessor for Mistral3ImageProcessor {
81    fn get_type(&self) -> InputsProcessorType {
82        InputsProcessorType::Vision
83    }
84    fn process_inputs(
85        &self,
86        tokenizer: Option<Arc<Tokenizer>>,
87        input_seqs: &mut [&mut Sequence],
88        is_prompt: bool,
89        is_xlora: bool,
90        device: &Device,
91        no_kv_cache: bool,
92        last_n_context_len: Option<(usize, usize)>,
93        return_raw_logits: bool,
94        other_config: Option<Arc<dyn Any>>,
95        mut paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
96        prompt_chunksize: Option<NonZeroUsize>,
97        mapper: Option<&dyn DeviceMapper>,
98    ) -> Box<dyn Iterator<Item = anyhow::Result<InputProcessorOutput>>> {
99        if is_xlora {
100            return Box::new(std::iter::once(Err(anyhow::Error::msg(
101                "Cannot make inputs for X-LoRA vision model.",
102            ))));
103        }
104        if no_kv_cache {
105            return Box::new(std::iter::once(Err(anyhow::Error::msg(
106                "Vision model must have kv cache.",
107            ))));
108        }
109        // TODO(EricLBuehler): support this? Would require some handling of image tokens.
110        if prompt_chunksize.is_some() {
111            warn!("`prompt_chunksize` is set. Mistral3 does not support prompt batching.");
112        }
113        let Some(tokenizer) = tokenizer else {
114            return Box::new(std::iter::once(Err(anyhow::Error::msg(
115                "Idefics3ImageProcessor requires a specified tokenizer.",
116            ))));
117        };
118
119        let config = other_config.expect("Need a PreProcessorConfig config.");
120        let config: &PreProcessorConfig = config.downcast_ref().expect("Downcast failed.");
121
122        let has_images = input_seqs.iter().all(|seq| seq.has_images());
123
124        let (pixel_values, image_sizes) = if has_images {
125            let mut pixel_values_accum = Vec::new();
126            let mut image_sizes_accum = Vec::new();
127
128            for seq in input_seqs.iter_mut() {
129                let PreprocessedImages {
130                    pixel_values,
131                    pixel_attention_mask: _,
132                    image_sizes: _,
133                    num_img_tokens: _,
134                    aspect_ratio_ids: _,
135                    aspect_ratio_mask: _,
136                    num_tiles: _,
137                    image_grid_thw: _,
138                    video_grid_thw: _,
139                    rows: _,
140                    cols: _,
141                    pixel_values_list: _,
142                    tgt_sizes: _,
143                    image_sizes_all,
144                    num_crops: _,
145                } = self
146                    .preprocess(
147                        seq.take_images()
148                            .expect("Need to have images by this point."),
149                        vec![],
150                        config,
151                        device,
152                        (usize::MAX, usize::MAX), // Don't use it here...
153                    )
154                    .expect("Preprocessing failed");
155                let image_sizes_all = image_sizes_all.unwrap();
156
157                // Deliberately no .unsqueeze here
158                pixel_values_accum.push(pixel_values.clone());
159                image_sizes_accum.extend_from_slice(&image_sizes_all);
160
161                let mut prompt = tokenizer
162                    .decode(seq.get_toks(), false)
163                    .expect("Detokenization failed!");
164
165                let mut image_sizes_all_iter = image_sizes_all.into_iter();
166                let mut replace_strings = Vec::new();
167                while prompt.contains(&self.image_token) {
168                    let (height, width) = image_sizes_all_iter.next().unwrap();
169                    let num_height_tokens =
170                        (height as usize) / (self.patch_size * self.spatial_merge_size);
171                    let num_width_tokens =
172                        (width as usize) / (self.patch_size * self.spatial_merge_size);
173
174                    let mut replace_tokens = vec![
175                        [
176                            vec![self.image_token.clone(); num_width_tokens],
177                            vec![self.image_break_token.clone()],
178                        ]
179                        .concat();
180                        num_height_tokens
181                    ]
182                    .into_iter()
183                    .flatten()
184                    .collect::<Vec<_>>();
185
186                    *replace_tokens.last_mut().unwrap() = self.image_end_token.clone();
187
188                    replace_strings.push(replace_tokens.join(""));
189                    prompt = prompt.replace(&self.image_token, PLACEHOLDER);
190                }
191
192                while prompt.contains(PLACEHOLDER) {
193                    let replace_str = replace_strings.pop().unwrap();
194                    prompt = prompt.replace(PLACEHOLDER, &replace_str);
195                }
196
197                seq.set_initial_prompt(prompt.clone());
198                let toks = tokenizer
199                    .encode_fast(prompt, false)
200                    .expect("Detokenization failed!");
201
202                let ids = toks.get_ids().to_vec();
203                seq.set_toks_and_reallocate(ids, paged_attn_metadata.as_mut());
204            }
205
206            (
207                Some(Tensor::cat(&pixel_values_accum, 0).unwrap()),
208                Some(image_sizes_accum),
209            )
210        } else {
211            (None, None)
212        };
213
214        let text_models_inputs_processor::InnerInputProcessorOutput {
215            inputs:
216                text_models_inputs_processor::InputMetadata {
217                    input,
218                    positions,
219                    context_lens,
220                    position_ids,
221                    paged_attn_meta,
222                    flash_meta,
223                },
224            seq_indices,
225        } = if is_prompt {
226            get_prompt_input(
227                input_seqs
228                    .iter()
229                    .map(|seq| seq.get_toks().to_vec())
230                    .collect::<Vec<_>>(),
231                input_seqs,
232                device,
233                last_n_context_len,
234                return_raw_logits,
235                paged_attn_metadata.as_mut(),
236                None, // TODO: evaluate if it is possible to batch this
237                mapper,
238            )
239            .nth(0)
240            .unwrap()
241            .unwrap()
242        } else {
243            get_completion_input(
244                input_seqs
245                    .iter()
246                    .map(|seq| seq.get_toks().to_vec())
247                    .collect::<Vec<_>>(),
248                input_seqs,
249                device,
250                no_kv_cache,
251                last_n_context_len,
252                return_raw_logits,
253                paged_attn_metadata.as_mut(),
254                None, // TODO: evaluate if it is possible to batch this
255                mapper,
256            )
257            .nth(0)
258            .unwrap()
259            .unwrap()
260        };
261
262        let inputs: Box<dyn Any> = Box::new(ModelInputs {
263            input_ids: input,
264            seqlen_offsets: positions,
265            context_lens,
266            position_ids,
267            pixel_values,
268            model_specific_args: Box::new(Mistral3SpecificArgs { image_sizes }),
269            paged_attn_meta,
270            flash_meta,
271        });
272        Box::new(std::iter::once(Ok(InputProcessorOutput {
273            inputs,
274            seq_indices,
275        })))
276    }
277}
278
279impl Mistral3ImageProcessor {
280    #[allow(clippy::too_many_arguments)]
281    fn resize(
282        &self,
283        image: &DynamicImage,
284        mut height: usize,
285        mut width: usize,
286        max_height: usize,
287        max_width: usize,
288        patch_size: usize,
289        filter: FilterType,
290    ) -> DynamicImage {
291        let ratio = (height as f64 / max_height as f64).max(width as f64 / max_width as f64);
292        if ratio > 1. {
293            height = (height as f64 / ratio).floor() as usize;
294            width = (width as f64 / ratio).floor() as usize;
295        }
296
297        let num_height_tokens = (height - 1) / patch_size + 1;
298        let num_width_tokens = (width - 1) / patch_size + 1;
299
300        let resize_height = num_height_tokens * patch_size;
301        let resize_width = num_width_tokens * patch_size;
302
303        image.resize_exact(resize_width as u32, resize_height as u32, filter)
304    }
305}
306
307impl ImagePreProcessor for Mistral3ImageProcessor {
308    #[allow(clippy::excessive_precision)]
309    const DEFAULT_MEAN: [f64; 3] = [0.48145466, 0.4578275, 0.40821073];
310    #[allow(clippy::excessive_precision)]
311    const DEFAULT_STD: [f64; 3] = [0.26862954, 0.26130258, 0.27577711];
312
313    // https://github.com/huggingface/transformers/blob/main/src/transformers/models/pixtral/image_processing_pixtral.py
314    fn preprocess(
315        &self,
316        mut images: Vec<DynamicImage>,
317        videos: Vec<Vec<DynamicImage>>,
318        config: &PreProcessorConfig,
319        device: &Device,
320        (_bs, _max_num_images): (usize, usize),
321    ) -> Result<PreprocessedImages> {
322        assert!(videos.is_empty());
323
324        let do_resize = config.do_resize.unwrap();
325        let do_rescale = config.do_rescale.unwrap();
326        let rescale_factor = config.rescale_factor.unwrap();
327        let do_normalize = config.do_normalize.unwrap();
328        let image_mean = config.image_mean.unwrap_or(Self::DEFAULT_MEAN);
329        let image_std = config.image_std.unwrap_or(Self::DEFAULT_STD);
330        let do_convert_rgb = config.do_convert_rgb.unwrap_or(true);
331        let patch_size = config.patch_size.unwrap();
332        let size = config.size.as_ref().unwrap();
333        let resample = config.resampling.to_filter()?;
334
335        let default_to_square = config.default_to_square.unwrap();
336        assert!(default_to_square);
337
338        let mut pixel_values = Vec::new();
339        let mut image_sizes = Vec::new();
340
341        let (max_height, max_width) = if size.contains_key("longest_edge") {
342            (size["longest_edge"] as usize, size["longest_edge"] as usize)
343        } else if size.contains_key("height") && size.contains_key("width") {
344            (size["height"] as usize, size["width"] as usize)
345        } else {
346            candle_core::bail!("Size must be a map of `longest_edge` or `height` and `width`.");
347        };
348
349        for image in images.iter_mut() {
350            let (width, height) = image.dimensions();
351
352            // Convert to rgb
353            if do_convert_rgb {
354                *image = DynamicImage::ImageRgb8(image.to_rgb8());
355            }
356
357            if do_resize {
358                *image = self.resize(
359                    image,
360                    height as usize,
361                    width as usize,
362                    max_height,
363                    max_width,
364                    patch_size,
365                    resample,
366                );
367            }
368
369            let (width, height) = image.dimensions();
370
371            image_sizes.push((height, width));
372        }
373
374        images = mistralrs_vision::pad_to_max_image_size(images);
375
376        for image in images.iter_mut() {
377            let transforms = Transforms {
378                input: &ToTensorNoNorm,
379                inner_transforms: &[
380                    &do_rescale.then_some(Rescale {
381                        factor: Some(rescale_factor),
382                    }),
383                    &do_normalize.then(|| Normalize {
384                        mean: image_mean.to_vec(),
385                        std: image_std.to_vec(),
386                    }),
387                ],
388            };
389
390            let image = image.apply(transforms, device)?;
391            pixel_values.push(image.unsqueeze(0)?);
392        }
393
394        Ok(PreprocessedImages {
395            pixel_values: Tensor::cat(&pixel_values, 0)?,
396            pixel_attention_mask: None,
397            image_sizes: None,
398            num_img_tokens: None,
399            aspect_ratio_ids: None,
400            aspect_ratio_mask: None,
401            num_tiles: None,
402            image_grid_thw: None,
403            video_grid_thw: None,
404            rows: None,
405            cols: None,
406            pixel_values_list: None,
407            tgt_sizes: None,
408            image_sizes_all: Some(image_sizes),
409            num_crops: None,
410        })
411    }
412}