1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use std::{
4 any::Any,
5 collections::HashMap,
6 num::NonZeroUsize,
7 sync::{Arc, RwLock},
8};
9
10use candle_core::{Context, DType, Device, Result, Tensor};
11use image::{imageops::FilterType, DynamicImage};
12use itertools::Itertools;
13use mistralrs_vision::{
14 ApplyTensorTransforms, ApplyTransforms, Normalize, Rescale, TensorTransforms, ToTensorNoNorm,
15 Transforms,
16};
17use tokenizers::Tokenizer;
18use tracing::warn;
19
20use crate::{
21 device_map::DeviceMapper,
22 pipeline::{
23 text_models_inputs_processor::{
24 self, get_completion_input, get_prompt_input, PagedAttentionMeta,
25 },
26 InputProcessorOutput, InputsProcessor, InputsProcessorType, MessagesAction, Processor,
27 },
28 sequence::Sequence,
29 vision_models::{
30 image_processor::{ImagePreProcessor, PreprocessedImages},
31 preprocessor_config::{PreProcessorConfig, ToFilter},
32 ModelInputs,
33 },
34};
35
36use super::MLlamaSpecificArgs;
37
38const IMAGE_TOKEN: &str = "<|image|>";
39
40struct MLlamaImageProcessor {
42 max_image_tiles: RwLock<Option<usize>>,
44}
45pub struct MLlamaProcessor;
47
48impl MLlamaProcessor {
49 pub fn new() -> Self {
50 Self
51 }
52}
53
54impl Processor for MLlamaProcessor {
55 fn inputs_processor(&self) -> Arc<dyn InputsProcessor> {
56 Arc::new(MLlamaImageProcessor {
57 max_image_tiles: RwLock::new(None),
58 })
59 }
60
61 fn get_special_tokens(&self) -> &[&'static str] {
62 &[IMAGE_TOKEN, "<|python_tag|>"]
63 }
64
65 fn template_action(&self) -> MessagesAction {
66 MessagesAction::FlattenOnlyText
67 }
68}
69
70fn get_cross_attention_token_mask(input_ids: Vec<u32>, image_token_id: u32) -> Vec<(i64, i64)> {
73 let image_token_locations = input_ids
74 .iter()
75 .positions(|token| *token == image_token_id)
76 .collect::<Vec<_>>();
77
78 if image_token_locations.is_empty() {
79 return vec![];
80 }
81
82 if image_token_locations.len() == 1 {
84 return vec![(image_token_locations[0] as i64, -1)];
85 }
86
87 let mut vision_masks = image_token_locations[..image_token_locations.len() - 1]
88 .iter()
89 .zip(&image_token_locations[1..])
90 .map(|(a, b)| (*a as i64, *b as i64))
91 .collect::<Vec<_>>();
92
93 vision_masks.push((
95 *image_token_locations.last().unwrap() as i64,
96 input_ids.len() as i64,
97 ));
98
99 let mut last_mask_end = vision_masks.last().unwrap().1;
102 for vision_mask in vision_masks.iter_mut().rev() {
103 if vision_mask.0 == vision_mask.1 - 1 {
104 vision_mask.1 = last_mask_end;
105 }
106 last_mask_end = vision_mask.1;
107 }
108
109 vision_masks
110}
111
112fn convert_sparse_cross_attention_mask_to_dense(
124 cross_attn_token_mask: Vec<Vec<(i64, i64)>>,
125 num_tiles: Vec<Vec<usize>>,
126 max_num_tiles: usize,
127 length: usize,
128 dev: &Device,
129) -> candle_core::Result<Tensor> {
130 let bs = cross_attn_token_mask.len();
131 let max_num_images = cross_attn_token_mask.iter().map(|x| x.len()).max().unwrap();
132
133 let mut cross_attention_mask = Tensor::zeros(
134 (bs, length, max_num_images, max_num_tiles),
135 DType::I64,
136 &Device::Cpu,
137 )?;
138
139 for (sample_idx, (sample_masks, sample_num_tiles)) in
140 cross_attn_token_mask.into_iter().zip(num_tiles).enumerate()
141 {
142 for (mask_idx, ((start, end), mask_num_tiles)) in
143 sample_masks.into_iter().zip(sample_num_tiles).enumerate()
144 {
145 let mut end = end.min(length as i64);
146 if end == -1 {
147 end = length as i64;
148 }
149 cross_attention_mask = cross_attention_mask.slice_assign(
150 &[
151 &sample_idx,
152 &(start as usize..end as usize),
153 &mask_idx,
154 &(..mask_num_tiles),
155 ],
156 &Tensor::ones(
157 (1, end as usize - start as usize, 1, mask_num_tiles),
158 DType::I64,
159 &Device::Cpu,
160 )?,
161 )?;
162 }
163 }
164
165 cross_attention_mask.to_device(dev)
166}
167
168impl InputsProcessor for MLlamaImageProcessor {
169 fn get_type(&self) -> InputsProcessorType {
170 InputsProcessorType::Vision
171 }
172 fn process_inputs(
173 &self,
174 tokenizer: Option<Arc<Tokenizer>>,
175 input_seqs: &mut [&mut Sequence],
176 is_prompt: bool,
177 is_xlora: bool,
178 device: &Device,
179 no_kv_cache: bool,
180 last_n_context_len: Option<(usize, usize)>,
181 return_raw_logits: bool,
182 other_config: Option<Arc<dyn Any>>,
183 mut paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
184 prompt_chunksize: Option<NonZeroUsize>,
185 mapper: Option<&dyn DeviceMapper>,
186 ) -> Box<dyn Iterator<Item = anyhow::Result<InputProcessorOutput>>> {
187 if is_xlora {
188 return Box::new(std::iter::once(Err(anyhow::Error::msg(
189 "Cannot make inputs for X-LoRA vision model.",
190 ))));
191 }
192 if no_kv_cache {
193 return Box::new(std::iter::once(Err(anyhow::Error::msg(
194 "Vision model must have kv cache.",
195 ))));
196 }
197 if prompt_chunksize.is_some() {
199 warn!("`prompt_chunksize` is set. MLlama does not support prompt batching.");
200 }
201 let Some(tokenizer) = tokenizer else {
202 return Box::new(std::iter::once(Err(anyhow::Error::msg(
203 "MLlamaInputProcessor requires a specified tokenizer.",
204 ))));
205 };
206
207 let text_models_inputs_processor::InnerInputProcessorOutput {
208 inputs:
209 text_models_inputs_processor::InputMetadata {
210 input,
211 positions,
212 context_lens,
213 position_ids,
214 paged_attn_meta,
215 flash_meta,
216 },
217 seq_indices,
218 } = if is_prompt {
219 get_prompt_input(
220 input_seqs
221 .iter()
222 .map(|seq| seq.get_toks().to_vec())
223 .collect::<Vec<_>>(),
224 input_seqs,
225 device,
226 last_n_context_len,
227 return_raw_logits,
228 paged_attn_metadata.as_mut(),
229 None, mapper,
231 )
232 .nth(0)
233 .unwrap()
234 .unwrap()
235 } else {
236 get_completion_input(
237 input_seqs
238 .iter()
239 .map(|seq| seq.get_toks().to_vec())
240 .collect::<Vec<_>>(),
241 input_seqs,
242 device,
243 no_kv_cache,
244 last_n_context_len,
245 return_raw_logits,
246 paged_attn_metadata.as_mut(),
247 None, mapper,
249 )
250 .nth(0)
251 .unwrap()
252 .unwrap()
253 };
254 let config = other_config.expect("Need a PreProcessorConfig config.");
255 let config: &PreProcessorConfig = config.downcast_ref().expect("Downcast failed.");
256
257 let has_images = input_seqs.iter().all(|seq| seq.has_images());
258
259 let (pixel_values, aspect_ratio_ids, aspect_ratio_mask, cross_attn_mask) = if has_images {
260 let mut pixel_values_accum = Vec::new();
261 let mut aspect_ratio_ids_accum = Vec::new();
262 let mut aspect_ratio_mask_accum = Vec::new();
263 let mut num_tiles_accum = Vec::new();
264
265 let bs = input_seqs.len();
266 let detokenized = tokenizer
267 .decode_batch(
268 &input_seqs
269 .iter()
270 .map(|seq| seq.get_toks())
271 .collect::<Vec<_>>(),
272 false,
273 )
274 .expect("Detokenization failed!");
275 let n_images_in_text = detokenized
276 .iter()
277 .map(|text| text.matches(IMAGE_TOKEN).count())
278 .collect::<Vec<_>>();
279 let n_images_in_images = input_seqs
280 .iter()
281 .map(|seq| seq.images().map(|imgs| imgs.len()).unwrap_or(0))
282 .collect::<Vec<_>>();
283
284 if n_images_in_text != n_images_in_images {
285 return Box::new(std::iter::once(Err(anyhow::Error::msg(format!(
286 "The number of images in each batch {n_images_in_text:?} should be the same as the number of images {n_images_in_images:?}. The model cannot support a different number of images per patch. Perhaps you forgot a `<|image|>` tag?"
287 )))));
288 }
289
290 let max_num_images = *n_images_in_images
291 .iter()
292 .max()
293 .expect("No max images per batch!");
294
295 for seq in input_seqs.iter_mut() {
296 let PreprocessedImages {
297 pixel_values,
298 pixel_attention_mask: _,
299 image_sizes: _,
300 num_img_tokens: _,
301 aspect_ratio_ids,
302 aspect_ratio_mask,
303 num_tiles,
304 image_grid_thw: _,
305 video_grid_thw: _,
306 rows: _,
307 cols: _,
308 pixel_values_list: _,
309 tgt_sizes: _,
310 image_sizes_all: _,
311 num_crops: _,
312 } = self
313 .preprocess(
314 seq.take_images()
315 .expect("Need to have images by this point."),
316 vec![],
317 config,
318 device,
319 (bs, max_num_images), )
321 .expect("Preprocessing failed");
322 pixel_values_accum.push(pixel_values.unsqueeze(0).unwrap());
323 aspect_ratio_ids_accum.push(aspect_ratio_ids.unwrap().unsqueeze(0).unwrap());
324 aspect_ratio_mask_accum.push(aspect_ratio_mask.unwrap().unsqueeze(0).unwrap());
325 num_tiles_accum.push(num_tiles.unwrap());
326 }
327
328 let image_token_id = tokenizer
330 .encode_fast(IMAGE_TOKEN, false)
331 .unwrap()
332 .get_ids()
333 .to_vec();
334 let image_token_id = if image_token_id.len() == 1 {
335 image_token_id[0]
336 } else {
337 panic!("{IMAGE_TOKEN} encoding should be one token, got {image_token_id:?}");
338 };
339 let chunks = input.chunk(input.dim(0).unwrap(), 0).unwrap();
340 let cross_attention_token_mask = chunks
341 .iter()
342 .map(|token_ids| {
343 get_cross_attention_token_mask(
344 token_ids.squeeze(0).unwrap().to_vec1::<u32>().unwrap(),
345 image_token_id,
346 )
347 })
348 .collect::<Vec<_>>();
349
350 let cross_attn_mask = convert_sparse_cross_attention_mask_to_dense(
351 cross_attention_token_mask,
352 num_tiles_accum,
353 self.max_image_tiles
354 .read()
355 .unwrap()
356 .expect("`max_image_tiles` must be set!"),
357 chunks
358 .iter()
359 .map(|input_ids| *input_ids.dims().last().unwrap())
360 .max()
361 .unwrap(),
362 chunks[0].device(),
363 );
364
365 let cross_attn_mask = match cross_attn_mask {
366 Ok(v) => v,
367 Err(e) => return Box::new(std::iter::once(Err(anyhow::Error::msg(e.to_string())))),
368 };
369
370 (
371 Some(Tensor::cat(&pixel_values_accum, 0).unwrap()),
372 Some(Tensor::cat(&aspect_ratio_ids_accum, 0).unwrap()),
373 Some(Tensor::cat(&aspect_ratio_mask_accum, 0).unwrap()),
374 Some(cross_attn_mask),
375 )
376 } else {
377 (None, None, None, None)
378 };
379
380 let inputs: Box<dyn Any> = Box::new(ModelInputs {
381 input_ids: input,
382 seqlen_offsets: positions,
383 context_lens,
384 position_ids,
385 pixel_values,
386 model_specific_args: Box::new(MLlamaSpecificArgs {
387 aspect_ratio_ids,
388 aspect_ratio_mask,
389 cross_attn_mask,
390 }),
391 paged_attn_meta,
392 flash_meta,
393 });
394 Box::new(std::iter::once(Ok(InputProcessorOutput {
395 inputs,
396 seq_indices,
397 })))
398 }
399}
400
401fn argmin<T, I>(iter: I) -> Option<usize>
402where
403 T: PartialOrd,
404 I: Iterator<Item = T>,
405{
406 iter.enumerate()
407 .fold(None, |min, (idx, item)| match min {
408 None => Some((idx, item)),
409 Some((min_idx, min_item)) => {
410 if item < min_item {
411 Some((idx, item))
412 } else {
413 Some((min_idx, min_item))
414 }
415 }
416 })
417 .map(|(min_idx, _)| min_idx)
418}
419
420impl MLlamaImageProcessor {
421 fn get_all_supported_aspect_ratios(max_image_tiles: usize) -> Vec<(usize, usize)> {
423 (1..max_image_tiles + 1)
424 .flat_map(|width| {
425 (1..max_image_tiles + 1).filter_map(move |height| {
426 if width * height <= max_image_tiles {
427 Some((width, height))
428 } else {
429 None
430 }
431 })
432 })
433 .collect::<Vec<_>>()
434 }
435
436 fn get_optimal_tiled_canvas(
438 image_height: u32,
439 image_width: u32,
440 max_image_tiles: usize,
441 tile_size: usize,
442 ) -> Result<(usize, usize)> {
443 let possible_tile_arrangements = Self::get_all_supported_aspect_ratios(max_image_tiles);
444 let possible_canvas_sizes: (Vec<_>, Vec<_>) = possible_tile_arrangements
445 .into_iter()
446 .map(|(h, w)| (h * tile_size, w * tile_size))
447 .unzip();
448 let (target_heights, target_widths) = possible_canvas_sizes;
450
451 let scale_h = target_heights
453 .iter()
454 .map(|h| *h as f32 / image_height as f32)
455 .collect::<Vec<_>>();
456 let scale_w = target_widths
457 .iter()
458 .map(|w| *w as f32 / image_width as f32)
459 .collect::<Vec<_>>();
460
461 let scales = scale_h
463 .into_iter()
464 .zip(scale_w)
465 .map(|(scale_h, scale_w)| if scale_w > scale_h { scale_h } else { scale_w })
466 .collect::<Vec<_>>();
467
468 let upscaling_options = scales
470 .iter()
471 .copied()
472 .filter(|scale| *scale >= 1.)
473 .collect::<Vec<_>>();
474 let selected_scale = if !upscaling_options.is_empty() {
475 upscaling_options
476 .into_iter()
477 .min_by(|x, y| x.partial_cmp(y).expect("No ordering!"))
478 .context("No min, upscale")?
479 } else {
480 let downscaling_options = scales
482 .iter()
483 .copied()
484 .filter(|scale| *scale < 1.)
485 .collect::<Vec<_>>();
486 downscaling_options
487 .into_iter()
488 .max_by(|x, y| x.partial_cmp(y).expect("No ordering!"))
489 .context("No max, downscale")?
490 };
491
492 let chosen_canvas_h = target_heights
494 .iter()
495 .copied()
496 .enumerate()
497 .filter_map(|(i, h)| {
498 if scales[i] == selected_scale {
499 Some(h)
500 } else {
501 None
502 }
503 })
504 .collect::<Vec<_>>();
505 let chosen_canvas_w = target_widths
506 .iter()
507 .copied()
508 .enumerate()
509 .filter_map(|(i, w)| {
510 if scales[i] == selected_scale {
511 Some(w)
512 } else {
513 None
514 }
515 })
516 .collect::<Vec<_>>();
517
518 assert_eq!(chosen_canvas_h.len(), chosen_canvas_w.len());
519 if chosen_canvas_h.len() > 1 {
520 let optimal_idx = argmin(
521 chosen_canvas_h
522 .iter()
523 .zip(&chosen_canvas_w)
524 .map(|(h, w)| *h * *w),
525 )
526 .context("No argmin")?;
527 Ok((chosen_canvas_h[optimal_idx], chosen_canvas_w[optimal_idx]))
528 } else {
529 Ok((chosen_canvas_h[0], chosen_canvas_w[0]))
530 }
531 }
532
533 fn get_image_size_fit_to_canvas(
535 image_height: u32,
536 image_width: u32,
537 canvas_height: usize,
538 canvas_width: usize,
539 tile_size: usize,
540 ) -> (usize, usize) {
541 let target_width = (image_width as usize).clamp(tile_size, canvas_width);
542 let target_height = (image_height as usize).clamp(tile_size, canvas_height);
543
544 let scale_h = (target_height as f32) / (image_height as f32);
545 let scale_w = (target_width as f32) / (image_width as f32);
546
547 if scale_w < scale_h {
548 (
549 target_height.min((image_height as f32 * scale_w).floor() as usize),
550 target_width,
551 )
552 } else {
553 (
554 target_height,
555 target_width.min((image_width as f32 * scale_h).floor() as usize),
556 )
557 }
558 }
559
560 fn resize(
564 &self,
565 image: DynamicImage,
566 size: &HashMap<String, u32>,
567 max_image_tiles: usize,
568 filter: FilterType,
569 ) -> Result<(DynamicImage, (usize, usize))> {
570 let image_height = image.height();
571 let image_width = image.width();
572 let tile_size = size["height"] as usize;
573
574 let (canvas_height, canvas_width) =
575 Self::get_optimal_tiled_canvas(image_height, image_width, max_image_tiles, tile_size)?;
576 let num_tiles_height = canvas_height / tile_size;
577 let num_tiles_width = canvas_width / tile_size;
578
579 let (new_height, new_width) = Self::get_image_size_fit_to_canvas(
580 image_height,
581 image_width,
582 canvas_height,
583 canvas_width,
584 tile_size,
585 );
586
587 Ok((
588 image.resize_exact(new_width as u32, new_height as u32, filter),
589 (num_tiles_height, num_tiles_width),
590 ))
591 }
592
593 fn pad(
597 &self,
598 image: &Tensor,
599 size: &HashMap<String, u32>,
600 aspect_ratio: (usize, usize),
601 ) -> Result<Tensor> {
602 let (num_tiles_h, num_tiles_w) = aspect_ratio;
603 let padded_height = num_tiles_h * size["height"] as usize;
604 let padded_width = num_tiles_w * size["width"] as usize;
605
606 mistralrs_vision::pad(image, padded_height, padded_width)
608 }
609
610 fn split_to_tiles(
613 &self,
614 image: &Tensor,
615 num_tiles_height: usize,
616 num_tiles_width: usize,
617 ) -> Result<Tensor> {
618 let (ch, h, w) = image.dims3()?;
619 let tile_height = h / num_tiles_height;
620 let tile_width = w / num_tiles_width;
621
622 let mut image = image.reshape((
623 ch,
624 num_tiles_height,
625 tile_height,
626 num_tiles_width,
627 tile_width,
628 ))?;
629
630 image = image.permute((1, 3, 0, 2, 4))?;
632
633 image
635 .reshape((
636 num_tiles_width * num_tiles_height,
637 ch,
638 tile_height,
639 tile_width,
640 ))?
641 .contiguous()
642 }
643
644 fn pack_images(
650 &self,
651 images: Vec<Tensor>,
652 max_image_tiles: usize,
653 (_bs, max_num_images): (usize, usize),
654 ) -> Result<(Tensor, Vec<usize>)> {
655 let (_, ch, tile_h, tile_w) = images[0].dims4()?;
656
657 let mut stacked_images = Tensor::zeros(
658 (max_num_images, max_image_tiles, ch, tile_h, tile_w),
659 images[0].dtype(),
660 images[0].device(),
661 )?;
662 let mut num_sample_tiles = Vec::new();
663 for (i, image) in images.into_iter().enumerate() {
664 let num_tiles = image.dim(0)?;
665 stacked_images = stacked_images
666 .slice_assign(&[&i, &(..num_tiles), &.., &.., &..], &image.unsqueeze(0)?)?;
667 num_sample_tiles.push(num_tiles)
668 }
669 Ok((stacked_images, num_sample_tiles))
670 }
671
672 fn convert_aspect_ratios_to_ids(
676 &self,
677 aspect_ratios: Vec<(usize, usize)>,
678 max_image_tiles: usize,
679 (_bs, max_num_images): (usize, usize),
680 device: &Device,
681 ) -> Result<Tensor> {
682 let supported_aspect_ratios = Self::get_all_supported_aspect_ratios(max_image_tiles);
683
684 let mut aspect_ratios_ids = vec![0i64; max_num_images];
685 for (i, (num_tiles_h, num_tiles_w)) in aspect_ratios.iter().enumerate() {
686 aspect_ratios_ids[i] = (supported_aspect_ratios
687 .iter()
688 .position(|(h, w)| *h == *num_tiles_h && *w == *num_tiles_w)
689 .context("Could not find aspect ratio")?
690 + 1) as i64;
691 }
692
693 Tensor::new(aspect_ratios_ids, device)
694 }
695
696 fn build_aspect_ratio_mask(
697 &self,
698 aspect_ratios: Vec<(usize, usize)>,
699 max_image_tiles: usize,
700 (_bs, max_num_images): (usize, usize),
701 device: &Device,
702 ) -> Result<Tensor> {
703 let mut aspect_ratio_mask =
704 Tensor::zeros((max_num_images, max_image_tiles), DType::I64, device)?;
705
706 aspect_ratio_mask = aspect_ratio_mask.slice_assign(
710 &[&.., &0],
711 &Tensor::ones((max_num_images, 1), DType::I64, device)?,
712 )?;
713
714 for (i, (num_tiles_h, num_tiles_w)) in aspect_ratios.iter().enumerate() {
715 aspect_ratio_mask = aspect_ratio_mask.slice_assign(
716 &[&i, &(..*num_tiles_h * *num_tiles_w)],
717 &Tensor::ones((1, *num_tiles_h * *num_tiles_w), DType::I64, device)?,
718 )?;
719 }
720
721 Ok(aspect_ratio_mask)
722 }
723}
724
725impl ImagePreProcessor for MLlamaImageProcessor {
726 const DEFAULT_MEAN: [f64; 3] = [0.5, 0.5, 0.5];
727 const DEFAULT_STD: [f64; 3] = [0.5, 0.5, 0.5];
728
729 fn preprocess(
730 &self,
731 images: Vec<DynamicImage>,
732 videos: Vec<Vec<DynamicImage>>,
733 config: &PreProcessorConfig,
734 device: &Device,
735 (bs, max_num_images): (usize, usize),
736 ) -> Result<PreprocessedImages> {
737 assert!(videos.is_empty());
738
739 let mut sample_images = Vec::new();
740 let mut sample_aspect_ratios = Vec::new();
741 let max_image_tiles = config
742 .max_image_tiles
743 .context("`do_resize=false` is not supported, need `max_image_tiles`!")?;
744 *self.max_image_tiles.write().unwrap() = Some(max_image_tiles);
745
746 for mut image in images {
747 if config.do_convert_rgb.unwrap_or(true) {
749 image = DynamicImage::ImageRgb8(image.to_rgb8());
750 }
751
752 let size = config
753 .size
754 .as_ref()
755 .context("`do_resize=false` is not supported, need `size`!")?;
756
757 let (image, aspect_ratio) =
758 self.resize(image, size, max_image_tiles, config.resampling.to_filter()?)?;
759
760 let to_tensor_rescale = Transforms {
764 input: &ToTensorNoNorm,
765 inner_transforms: &[],
766 };
767 let mut image = image.apply(to_tensor_rescale, device)?;
768
769 image = self.pad(&image, size, aspect_ratio)?;
770
771 let transforms = TensorTransforms {
772 inner_transforms: &[
773 &config
774 .do_rescale
775 .is_some_and(|x| x)
776 .then_some(())
777 .map(|_| Rescale {
778 factor: config.rescale_factor,
779 }),
780 &config
781 .do_normalize
782 .is_some_and(|x| x)
783 .then_some(())
784 .map(|_| Normalize {
785 mean: config.image_mean.unwrap_or(Self::DEFAULT_MEAN).to_vec(),
786 std: config.image_std.unwrap_or(Self::DEFAULT_STD).to_vec(),
787 }),
788 ],
789 };
790 image = <Tensor as ApplyTensorTransforms>::apply(&image, transforms, device)?;
791
792 let (num_tiles_height, num_tiles_width) = aspect_ratio;
793 image = self.split_to_tiles(&image, num_tiles_height, num_tiles_width)?;
794
795 sample_images.push(image);
796 sample_aspect_ratios.push((num_tiles_height, num_tiles_width));
797 }
798
799 let (images, num_tiles) =
800 self.pack_images(sample_images, max_image_tiles, (bs, max_num_images))?;
801
802 let aspect_ratio_ids = self.convert_aspect_ratios_to_ids(
803 sample_aspect_ratios.clone(),
804 max_image_tiles,
805 (bs, max_num_images),
806 device,
807 )?;
808 let aspect_ratio_mask = self.build_aspect_ratio_mask(
809 sample_aspect_ratios,
810 max_image_tiles,
811 (bs, max_num_images),
812 device,
813 )?;
814
815 Ok(PreprocessedImages {
816 pixel_values: images,
817 pixel_attention_mask: None,
818 image_sizes: None,
819 num_img_tokens: None,
820 aspect_ratio_ids: Some(aspect_ratio_ids),
821 aspect_ratio_mask: Some(aspect_ratio_mask),
822 num_tiles: Some(num_tiles),
823 image_grid_thw: None,
824 video_grid_thw: None,
825 rows: None,
826 cols: None,
827 pixel_values_list: None,
828 tgt_sizes: None,
829 image_sizes_all: None,
830 num_crops: None,
831 })
832 }
833}