mistralrs_core/vision_models/mllama/inputs_processor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
use std::{
any::Any,
collections::HashMap,
num::NonZeroUsize,
sync::{Arc, RwLock},
};
use candle_core::{Context, DType, Device, Result, Tensor};
use image::{imageops::FilterType, DynamicImage};
use itertools::Itertools;
use mistralrs_vision::{
ApplyTensorTransforms, ApplyTransforms, Normalize, Rescale, TensorTransforms, ToTensorNoNorm,
Transforms,
};
use tokenizers::Tokenizer;
use tracing::warn;
use crate::{
device_map::DeviceMapper,
pipeline::{
text_models_inputs_processor::{
self, get_completion_input, get_prompt_input, PagedAttentionMeta,
},
InputProcessorOutput, InputsProcessor, InputsProcessorType, MessagesAction, Processor,
},
sequence::Sequence,
vision_models::{
image_processor::{ImagePreProcessor, PreprocessedImages},
preprocessor_config::{PreProcessorConfig, ToFilter},
ModelInputs,
},
};
use super::MLlamaSpecificArgs;
const IMAGE_TOKEN: &str = "<|image|>";
// Input processor
struct MLlamaImageProcessor {
// To represent uninitialized, we do this. Should always be init by the time this is read.
max_image_tiles: RwLock<Option<usize>>,
}
// Processor
pub struct MLlamaProcessor;
impl MLlamaProcessor {
pub fn new() -> Self {
Self
}
}
impl Processor for MLlamaProcessor {
fn inputs_processor(&self) -> Arc<dyn InputsProcessor> {
Arc::new(MLlamaImageProcessor {
max_image_tiles: RwLock::new(None),
})
}
fn get_special_tokens(&self) -> &[&'static str] {
&[IMAGE_TOKEN, "<|python_tag|>"]
}
fn template_action(&self) -> MessagesAction {
MessagesAction::FlattenOnlyText
}
}
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/processing_mllama.py#L61
/// Generate a cross-attention token mask for image tokens in the input sequence.
fn get_cross_attention_token_mask(input_ids: Vec<u32>, image_token_id: u32) -> Vec<(i64, i64)> {
let image_token_locations = input_ids
.iter()
.positions(|token| *token == image_token_id)
.collect::<Vec<_>>();
if image_token_locations.is_empty() {
return vec![];
}
// If only one image present, unmask until end of sequence
if image_token_locations.len() == 1 {
return vec![(image_token_locations[0] as i64, -1)];
}
let mut vision_masks = image_token_locations[..image_token_locations.len() - 1]
.iter()
.zip(&image_token_locations[1..])
.map(|(a, b)| (*a as i64, *b as i64))
.collect::<Vec<_>>();
// Last image will attent to all subsequent text
vision_masks.push((
*image_token_locations.last().unwrap() as i64,
input_ids.len() as i64,
));
// If there are 2 or more consecutive vision tokens, they should all attend
// to all subsequent text present
let mut last_mask_end = vision_masks.last().unwrap().1;
for vision_mask in vision_masks.iter_mut().rev() {
if vision_mask.0 == vision_mask.1 - 1 {
vision_mask.1 = last_mask_end;
}
last_mask_end = vision_mask.1;
}
vision_masks
}
// Convert the cross attention mask indices to a cross attention mask 4D array.
/// `cross_attention_token_mask` structure:
/// - The outer list represents the batch dimension.
/// - The middle list represents different images within each batch item.
/// - The inner list contains pairs of integers [start, end] representing token ranges for each image.
///
/// `num_tiles`: the number of tiles for each image in each batch item.
///
/// NOTE: Special handling is done for cases where the end token is -1, which is interpreted as attending to the end of the sequence.
///
/// Out shape is (batch_size, length, max_num_images, max_num_tiles). 1 means attn is allowed, 0 means it is not
fn convert_sparse_cross_attention_mask_to_dense(
cross_attn_token_mask: Vec<Vec<(i64, i64)>>,
num_tiles: Vec<Vec<usize>>,
max_num_tiles: usize,
length: usize,
dev: &Device,
) -> candle_core::Result<Tensor> {
let bs = cross_attn_token_mask.len();
let max_num_images = cross_attn_token_mask.iter().map(|x| x.len()).max().unwrap();
let mut cross_attention_mask = Tensor::zeros(
(bs, length, max_num_images, max_num_tiles),
DType::I64,
&Device::Cpu,
)?;
for (sample_idx, (sample_masks, sample_num_tiles)) in
cross_attn_token_mask.into_iter().zip(num_tiles).enumerate()
{
for (mask_idx, ((start, end), mask_num_tiles)) in
sample_masks.into_iter().zip(sample_num_tiles).enumerate()
{
let mut end = end.min(length as i64);
if end == -1 {
end = length as i64;
}
cross_attention_mask = cross_attention_mask.slice_assign(
&[
&sample_idx,
&(start as usize..end as usize),
&mask_idx,
&(..mask_num_tiles),
],
&Tensor::ones(
(1, end as usize - start as usize, 1, mask_num_tiles),
DType::I64,
&Device::Cpu,
)?,
)?;
}
}
cross_attention_mask.to_device(dev)
}
impl InputsProcessor for MLlamaImageProcessor {
fn get_type(&self) -> InputsProcessorType {
InputsProcessorType::Vision
}
fn process_inputs(
&self,
tokenizer: Option<Arc<Tokenizer>>,
input_seqs: &mut [&mut Sequence],
is_prompt: bool,
is_xlora: bool,
device: &Device,
no_kv_cache: bool,
last_n_context_len: Option<(usize, usize)>,
return_raw_logits: bool,
other_config: Option<Arc<dyn Any>>,
mut paged_attn_metadata: Option<PagedAttentionMeta<'_>>,
prompt_batchsize: Option<NonZeroUsize>,
_mapper: Option<&dyn DeviceMapper>,
) -> Box<dyn Iterator<Item = anyhow::Result<InputProcessorOutput>>> {
if is_xlora {
return Box::new(std::iter::once(Err(anyhow::Error::msg(
"Cannot make inputs for X-LoRA vision model.",
))));
}
if no_kv_cache {
return Box::new(std::iter::once(Err(anyhow::Error::msg(
"Vision model must have kv cache.",
))));
}
// TODO(EricLBuehler): support this? Would require some handling of image tokens.
if prompt_batchsize.is_some() {
warn!("`prompt_batchsize` is set. MLlama does not support prompt batching.");
}
let Some(tokenizer) = tokenizer else {
return Box::new(std::iter::once(Err(anyhow::Error::msg(
"MLlamaInputProcessor requires a specified tokenizer.",
))));
};
let text_models_inputs_processor::InnerInputProcessorOutput {
inputs:
text_models_inputs_processor::InputMetadata {
input,
positions,
positions_kernel,
context_lens,
position_ids,
paged_attn_meta,
flash_meta,
},
seq_indices,
} = if is_prompt {
get_prompt_input(
input_seqs
.iter()
.map(|seq| seq.get_toks().to_vec())
.collect::<Vec<_>>(),
input_seqs,
device,
last_n_context_len,
return_raw_logits,
paged_attn_metadata.as_mut(),
None, // TODO: evaluate if it is possible to batch this
None,
)
.nth(0)
.unwrap()
.unwrap()
} else {
get_completion_input(
input_seqs
.iter()
.map(|seq| seq.get_toks().to_vec())
.collect::<Vec<_>>(),
input_seqs,
device,
no_kv_cache,
last_n_context_len,
return_raw_logits,
paged_attn_metadata.as_mut(),
None, // TODO: evaluate if it is possible to batch this
None,
)
.nth(0)
.unwrap()
.unwrap()
};
let config = other_config.expect("Need a PreProcessorConfig config.");
let config: &PreProcessorConfig = config.downcast_ref().expect("Downcast failed.");
let has_images = input_seqs
.iter()
.all(|seq| seq.images().is_some_and(|images| !images.is_empty()));
let (pixel_values, aspect_ratio_ids, aspect_ratio_mask, cross_attn_mask) = if has_images {
let mut pixel_values_accum = Vec::new();
let mut aspect_ratio_ids_accum = Vec::new();
let mut aspect_ratio_mask_accum = Vec::new();
let mut num_tiles_accum = Vec::new();
let bs = input_seqs.len();
let detokenized = tokenizer
.decode_batch(
&input_seqs
.iter()
.map(|seq| seq.get_toks())
.collect::<Vec<_>>(),
false,
)
.expect("Detokenization failed!");
let n_images_in_text = detokenized
.iter()
.map(|text| text.matches(IMAGE_TOKEN).count())
.collect::<Vec<_>>();
let n_images_in_images = input_seqs
.iter()
.map(|seq| seq.images().map(|imgs| imgs.len()).unwrap_or(0))
.collect::<Vec<_>>();
if n_images_in_text != n_images_in_images {
return Box::new(std::iter::once(Err(anyhow::Error::msg(format!(
"The number of images in each batch {n_images_in_text:?} should be the same as the number of images {n_images_in_images:?}. The model cannot support a different number of images per patch. Perhaps you forgot a `<|image|>` tag?"
)))));
}
let max_num_images = *n_images_in_images
.iter()
.max()
.expect("No max images per batch!");
for seq in input_seqs.iter_mut() {
let PreprocessedImages {
pixel_values,
pixel_attention_mask: _,
image_sizes: _,
num_img_tokens: _,
aspect_ratio_ids,
aspect_ratio_mask,
num_tiles,
image_grid_thw: _,
video_grid_thw: _,
rows: _,
cols: _,
} = self
.preprocess(
seq.take_images()
.expect("Need to have images by this point."),
vec![],
config,
device,
(bs, max_num_images), // Don't use it here...
)
.expect("Preprocessing failed");
pixel_values_accum.push(pixel_values.unsqueeze(0).unwrap());
aspect_ratio_ids_accum.push(aspect_ratio_ids.unwrap().unsqueeze(0).unwrap());
aspect_ratio_mask_accum.push(aspect_ratio_mask.unwrap().unsqueeze(0).unwrap());
num_tiles_accum.push(num_tiles.unwrap());
}
// Create cross attn mask
let image_token_id = tokenizer
.encode(IMAGE_TOKEN, false)
.unwrap()
.get_ids()
.to_vec();
let image_token_id = if image_token_id.len() == 1 {
image_token_id[0]
} else {
panic!("{IMAGE_TOKEN} encoding should be one token, got {image_token_id:?}");
};
let chunks = input.chunk(input.dim(0).unwrap(), 0).unwrap();
let cross_attention_token_mask = chunks
.iter()
.map(|token_ids| {
get_cross_attention_token_mask(
token_ids.squeeze(0).unwrap().to_vec1::<u32>().unwrap(),
image_token_id,
)
})
.collect::<Vec<_>>();
let cross_attn_mask = convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask,
num_tiles_accum,
self.max_image_tiles
.read()
.unwrap()
.expect("`max_image_tiles` must be set!"),
chunks
.iter()
.map(|input_ids| *input_ids.dims().last().unwrap())
.max()
.unwrap(),
chunks[0].device(),
);
let cross_attn_mask = match cross_attn_mask {
Ok(v) => v,
Err(e) => return Box::new(std::iter::once(Err(anyhow::Error::msg(e.to_string())))),
};
// cross_attn_mask
// .to_dtype(DType::F32).unwrap()
// .to_device(&Device::Cpu).unwrap()
// .write_npy("/home/ubuntu/dump/mistralrs/cross_attn_mask.npy").unwrap();
(
Some(Tensor::cat(&pixel_values_accum, 0).unwrap()),
Some(Tensor::cat(&aspect_ratio_ids_accum, 0).unwrap()),
Some(Tensor::cat(&aspect_ratio_mask_accum, 0).unwrap()),
Some(cross_attn_mask),
)
} else {
(None, None, None, None)
};
let inputs: Box<dyn Any> = Box::new(ModelInputs {
input_ids: input,
seqlen_offsets: positions,
seqlen_offsets_kernel: positions_kernel,
context_lens,
position_ids,
pixel_values,
model_specific_args: Box::new(MLlamaSpecificArgs {
aspect_ratio_ids,
aspect_ratio_mask,
cross_attn_mask,
}),
paged_attn_meta,
flash_meta,
});
Box::new(std::iter::once(Ok(InputProcessorOutput {
inputs,
seq_indices,
})))
}
}
fn argmin<T, I>(iter: I) -> Option<usize>
where
T: PartialOrd,
I: Iterator<Item = T>,
{
iter.enumerate()
.fold(None, |min, (idx, item)| match min {
None => Some((idx, item)),
Some((min_idx, min_item)) => {
if item < min_item {
Some((idx, item))
} else {
Some((min_idx, min_item))
}
}
})
.map(|(min_idx, _)| min_idx)
}
impl MLlamaImageProcessor {
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/image_processing_mllama.py#L53
fn get_all_supported_aspect_ratios(max_image_tiles: usize) -> Vec<(usize, usize)> {
(1..max_image_tiles + 1)
.flat_map(|width| {
(1..max_image_tiles + 1).filter_map(move |height| {
if width * height <= max_image_tiles {
Some((width, height))
} else {
None
}
})
})
.collect::<Vec<_>>()
}
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/image_processing_mllama.py#L132
fn get_optimal_tiled_canvas(
image_height: u32,
image_width: u32,
max_image_tiles: usize,
tile_size: usize,
) -> Result<(usize, usize)> {
let possible_tile_arrangements = Self::get_all_supported_aspect_ratios(max_image_tiles);
let possible_canvas_sizes: (Vec<_>, Vec<_>) = possible_tile_arrangements
.into_iter()
.map(|(h, w)| (h * tile_size, w * tile_size))
.unzip();
// Get all possible resolution heights/widths
let (target_heights, target_widths) = possible_canvas_sizes;
// Get scaling factors to resize the image without distortion
let scale_h = target_heights
.iter()
.map(|h| *h as f32 / image_height as f32)
.collect::<Vec<_>>();
let scale_w = target_widths
.iter()
.map(|w| *w as f32 / image_width as f32)
.collect::<Vec<_>>();
// Get the min scale between width and height
let scales = scale_h
.into_iter()
.zip(scale_w)
.map(|(scale_h, scale_w)| if scale_w > scale_h { scale_h } else { scale_w })
.collect::<Vec<_>>();
// Filter only scales that allow upscaling
let upscaling_options = scales
.iter()
.copied()
.filter(|scale| *scale >= 1.)
.collect::<Vec<_>>();
let selected_scale = if !upscaling_options.is_empty() {
upscaling_options
.into_iter()
.min_by(|x, y| x.partial_cmp(y).expect("No ordering!"))
.context("No min, upscale")?
} else {
// No upscaling possible, get min downscaling (max scale for scales<1)
let downscaling_options = scales
.iter()
.copied()
.filter(|scale| *scale < 1.)
.collect::<Vec<_>>();
downscaling_options
.into_iter()
.max_by(|x, y| x.partial_cmp(y).expect("No ordering!"))
.context("No max, downscale")?
};
// Get all resolutions that support this scaling factor
let chosen_canvas_h = target_heights
.iter()
.copied()
.enumerate()
.filter_map(|(i, h)| {
if scales[i] == selected_scale {
Some(h)
} else {
None
}
})
.collect::<Vec<_>>();
let chosen_canvas_w = target_widths
.iter()
.copied()
.enumerate()
.filter_map(|(i, w)| {
if scales[i] == selected_scale {
Some(w)
} else {
None
}
})
.collect::<Vec<_>>();
assert_eq!(chosen_canvas_h.len(), chosen_canvas_w.len());
if chosen_canvas_h.len() > 1 {
let optimal_idx = argmin(
chosen_canvas_h
.iter()
.zip(&chosen_canvas_w)
.map(|(h, w)| *h * *w),
)
.context("No argmin")?;
Ok((chosen_canvas_h[optimal_idx], chosen_canvas_w[optimal_idx]))
} else {
Ok((chosen_canvas_h[0], chosen_canvas_w[0]))
}
}
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/image_processing_mllama.py#L82
fn get_image_size_fit_to_canvas(
image_height: u32,
image_width: u32,
canvas_height: usize,
canvas_width: usize,
tile_size: usize,
) -> (usize, usize) {
let target_width = (image_width as usize).clamp(tile_size, canvas_width);
let target_height = (image_height as usize).clamp(tile_size, canvas_height);
let scale_h = (target_height as f32) / (image_height as f32);
let scale_w = (target_width as f32) / (image_width as f32);
if scale_w < scale_h {
(
target_height.min((image_height as f32 * scale_w).floor() as usize),
target_width,
)
} else {
(
target_height,
target_width.min((image_width as f32 * scale_h).floor() as usize),
)
}
}
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/image_processing_mllama.py#L796
/// Resizes an image to fit within a tiled canvas while maintaining its aspect ratio.
/// The optimal canvas size is calculated based on the maximum number of tiles and the tile size.
fn resize(
&self,
image: DynamicImage,
size: &HashMap<String, u32>,
max_image_tiles: usize,
filter: FilterType,
) -> Result<(DynamicImage, (usize, usize))> {
let image_height = image.height();
let image_width = image.width();
let tile_size = size["height"] as usize;
let (canvas_height, canvas_width) =
Self::get_optimal_tiled_canvas(image_height, image_width, max_image_tiles, tile_size)?;
let num_tiles_height = canvas_height / tile_size;
let num_tiles_width = canvas_width / tile_size;
// dbg!(
// canvas_height,
// canvas_width,
// num_tiles_height,
// num_tiles_width
// );
let (new_height, new_width) = Self::get_image_size_fit_to_canvas(
image_height,
image_width,
canvas_height,
canvas_width,
tile_size,
);
// dbg!(new_height, new_width);
Ok((
image.resize_exact(new_width as u32, new_height as u32, filter),
(num_tiles_height, num_tiles_width),
))
}
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/image_processing_mllama.py#L749
/// Pad an image to the `size` x `aspect_ratio`. For example, if size is {height: 224, width: 224} and aspect ratio is
/// (1, 2), the image will be padded to 224x448.
fn pad(
&self,
image: &Tensor,
size: &HashMap<String, u32>,
aspect_ratio: (usize, usize),
) -> Result<Tensor> {
let (num_tiles_h, num_tiles_w) = aspect_ratio;
let padded_height = num_tiles_h * size["height"] as usize;
let padded_width = num_tiles_w * size["width"] as usize;
// Add padding on bottom and right sides
mistralrs_vision::pad(image, padded_height, padded_width)
}
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/image_processing_mllama.py#L213
/// Split an image into a specified number of tiles along its width and height dimensions.
fn split_to_tiles(
&self,
image: &Tensor,
num_tiles_height: usize,
num_tiles_width: usize,
) -> Result<Tensor> {
let (ch, h, w) = image.dims3()?;
let tile_height = h / num_tiles_height;
let tile_width = w / num_tiles_width;
let mut image = image.reshape((
ch,
num_tiles_height,
tile_height,
num_tiles_width,
tile_width,
))?;
// Permute to (num_tiles_height, num_tiles_width, num_channels, tile_height, tile_width)
image = image.permute((1, 3, 0, 2, 4))?;
// Reshape into the desired output shape (num_tiles_width * num_tiles_height, num_channels, tile_height, tile_width)
image
.reshape((
num_tiles_width * num_tiles_height,
ch,
tile_height,
tile_width,
))?
.contiguous()
}
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/image_processing_mllama.py#L277
/// Returns
/// - stacked and packed images
/// - a list of lists containing the number of tiles for each image in each batch sample.
/// Padding uses 0
fn pack_images(
&self,
images: Vec<Tensor>,
max_image_tiles: usize,
(_bs, max_num_images): (usize, usize),
) -> Result<(Tensor, Vec<usize>)> {
let (_, ch, tile_h, tile_w) = images[0].dims4()?;
let mut stacked_images = Tensor::zeros(
(max_num_images, max_image_tiles, ch, tile_h, tile_w),
images[0].dtype(),
images[0].device(),
)?;
let mut num_sample_tiles = Vec::new();
for (i, image) in images.into_iter().enumerate() {
let num_tiles = image.dim(0)?;
stacked_images = stacked_images
.slice_assign(&[&i, &(..num_tiles), &.., &.., &..], &image.unsqueeze(0)?)?;
num_sample_tiles.push(num_tiles)
}
Ok((stacked_images, num_sample_tiles))
}
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/models/mllama/image_processing_mllama.py#L354
/// Convert aspect ratio tuples to unique ids.
/// Padding uses 0
fn convert_aspect_ratios_to_ids(
&self,
aspect_ratios: Vec<(usize, usize)>,
max_image_tiles: usize,
(_bs, max_num_images): (usize, usize),
device: &Device,
) -> Result<Tensor> {
let supported_aspect_ratios = Self::get_all_supported_aspect_ratios(max_image_tiles);
let mut aspect_ratios_ids = vec![0i64; max_num_images];
for (i, (num_tiles_h, num_tiles_w)) in aspect_ratios.iter().enumerate() {
aspect_ratios_ids[i] = (supported_aspect_ratios
.iter()
.position(|(h, w)| *h == *num_tiles_h && *w == *num_tiles_w)
.context("Could not find aspect ratio")?
+ 1) as i64;
}
Tensor::new(aspect_ratios_ids, device)
}
fn build_aspect_ratio_mask(
&self,
aspect_ratios: Vec<(usize, usize)>,
max_image_tiles: usize,
(_bs, max_num_images): (usize, usize),
device: &Device,
) -> Result<Tensor> {
let mut aspect_ratio_mask =
Tensor::zeros((max_num_images, max_image_tiles), DType::I64, device)?;
// Set the first tile to 1 for all aspect ratios
// because in the original implementation, aspect ratios are apdded with (1,1)
aspect_ratio_mask = aspect_ratio_mask.slice_assign(
&[&.., &0],
&Tensor::ones((max_num_images, 1), DType::I64, device)?,
)?;
for (i, (num_tiles_h, num_tiles_w)) in aspect_ratios.iter().enumerate() {
aspect_ratio_mask = aspect_ratio_mask.slice_assign(
&[&i, &(..*num_tiles_h * *num_tiles_w)],
&Tensor::ones((1, *num_tiles_h * *num_tiles_w), DType::I64, device)?,
)?;
}
Ok(aspect_ratio_mask)
}
}
impl ImagePreProcessor for MLlamaImageProcessor {
const DEFAULT_MEAN: [f64; 3] = [0.5, 0.5, 0.5];
const DEFAULT_STD: [f64; 3] = [0.5, 0.5, 0.5];
fn preprocess(
&self,
images: Vec<DynamicImage>,
videos: Vec<Vec<DynamicImage>>,
config: &PreProcessorConfig,
device: &Device,
(bs, max_num_images): (usize, usize),
) -> Result<PreprocessedImages> {
assert!(videos.is_empty());
let mut sample_images = Vec::new();
let mut sample_aspect_ratios = Vec::new();
let max_image_tiles = config
.max_image_tiles
.context("`do_resize=false` is not supported, need `max_image_tiles`!")?;
*self.max_image_tiles.write().unwrap() = Some(max_image_tiles);
for mut image in images {
// Convert to rgb, default to true
if config.do_convert_rgb.unwrap_or(true) {
image = DynamicImage::ImageRgb8(image.to_rgb8());
}
let size = config
.size
.as_ref()
.context("`do_resize=false` is not supported, need `size`!")?;
// {
// let to_tensor_rescale = Transforms {
// input: &ToTensorNoNorm,
// inner_transforms: &[],
// };
// let image = image.apply(to_tensor_rescale, device)?;
// image
// .to_dtype(DType::F32)?
// .to_device(&Device::Cpu)?
// .write_npy("/home/ubuntu/dump/mistralrs/original_image.npy")?;
// }
let (image, aspect_ratio) =
self.resize(image, size, max_image_tiles, config.resampling.to_filter()?)?;
// In transformers they rescale from [0, 255] to [0, 1]
// at the end of resize:
// https://github.com/huggingface/transformers/blob/f2c388e3f946862f657acc1e21b272ec946fc66c/src/transformers/image_transforms.py#L340
let to_tensor_rescale = Transforms {
input: &ToTensorNoNorm,
inner_transforms: &[],
};
let mut image = image.apply(to_tensor_rescale, device)?;
// image
// .to_dtype(DType::F32)?
// .to_device(&Device::Cpu)?
// .write_npy("/home/ubuntu/dump/mistralrs/resize_image.npy")?;
image = self.pad(&image, size, aspect_ratio)?;
// image
// .to_dtype(DType::F32)?
// .to_device(&Device::Cpu)?
// .write_npy("/home/ubuntu/dump/mistralrs/pad_image.npy")?;
let transforms = TensorTransforms {
inner_transforms: &[
&config
.do_rescale
.is_some_and(|x| x)
.then_some(())
.map(|_| Rescale {
factor: config.rescale_factor,
}),
&config
.do_normalize
.is_some_and(|x| x)
.then_some(())
.map(|_| Normalize {
mean: config.image_mean.unwrap_or(Self::DEFAULT_MEAN).to_vec(),
std: config.image_std.unwrap_or(Self::DEFAULT_STD).to_vec(),
}),
],
};
image = <Tensor as ApplyTensorTransforms>::apply(&image, transforms, device)?;
// image
// .to_dtype(DType::F32)?
// .to_device(&Device::Cpu)?
// .write_npy("/home/ubuntu/dump/mistralrs/rescale_norm_image.npy")?;
let (num_tiles_height, num_tiles_width) = aspect_ratio;
image = self.split_to_tiles(&image, num_tiles_height, num_tiles_width)?;
// image
// .to_dtype(DType::F32)?
// .to_device(&Device::Cpu)?
// .write_npy("/home/ubuntu/dump/mistralrs/split_image.npy")?;
sample_images.push(image);
sample_aspect_ratios.push((num_tiles_height, num_tiles_width));
}
let (images, num_tiles) =
self.pack_images(sample_images, max_image_tiles, (bs, max_num_images))?;
let aspect_ratio_ids = self.convert_aspect_ratios_to_ids(
sample_aspect_ratios.clone(),
max_image_tiles,
(bs, max_num_images),
device,
)?;
let aspect_ratio_mask = self.build_aspect_ratio_mask(
sample_aspect_ratios,
max_image_tiles,
(bs, max_num_images),
device,
)?;
// aspect_ratio_ids
// .to_dtype(DType::F32)?
// .to_device(&Device::Cpu)?
// .write_npy("/home/ubuntu/dump/mistralrs/aspect_ratio_ids.npy")?;
// aspect_ratio_mask
// .to_dtype(DType::F32)?
// .to_device(&Device::Cpu)?
// .write_npy("/home/ubuntu/dump/mistralrs/aspect_ratio_mask.npy")?;
// images
// .to_dtype(DType::F32)?
// .to_device(&Device::Cpu)?
// .write_npy("/home/ubuntu/dump/mistralrs/packed_images.npy")?;
// dbg!(&num_tiles);
Ok(PreprocessedImages {
pixel_values: images,
pixel_attention_mask: None,
image_sizes: None,
num_img_tokens: None,
aspect_ratio_ids: Some(aspect_ratio_ids),
aspect_ratio_mask: Some(aspect_ratio_mask),
num_tiles: Some(num_tiles),
image_grid_thw: None,
video_grid_thw: None,
rows: None,
cols: None,
})
}
}