mistralrs_core/xlora_models/
gemma2.rs

1#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]
2
3use std::{collections::HashMap, sync::Arc};
4
5use candle_core::{DType, Device, Module, Result, Tensor};
6use mistralrs_quant::{QuantMethod, ShardedVarBuilder};
7use tqdm::Iter;
8use tracing::info;
9
10use crate::{
11    amoe::AnyMoeBaseModelMixin,
12    attention::SdpaParams,
13    device_map::DeviceMapper,
14    layers::{self, Activation, CausalMasker, RmsNorm, RotaryEmbedding, Sdpa},
15    lora::{linear_b, linear_no_bias, LinearLayerLike, LoraConfig},
16    models::gemma2::Config,
17    paged_attention::ModelConfigMetadata,
18    pipeline::{
19        extract_logits,
20        text_models_inputs_processor::{FlashParams, PagedAttentionInputMetadata},
21        Cache, EitherCache, IsqModel, NormalLoadingMetadata, NormalModel,
22    },
23    utils::progress::NiceProgressBar,
24    Ordering,
25};
26
27use super::{classifier::XLoraClassifier, NonGranularState, ScalingsMaker, XLoraConfig};
28
29#[derive(Clone)]
30#[allow(clippy::upper_case_acronyms)]
31struct MLP {
32    gate_proj: Arc<dyn LinearLayerLike + Send + Sync>,
33    up_proj: Arc<dyn LinearLayerLike + Send + Sync>,
34    down_proj: Arc<dyn LinearLayerLike + Send + Sync>,
35    act_fn: Activation,
36}
37
38impl MLP {
39    #[allow(clippy::too_many_arguments)]
40    fn new(
41        cfg: &Config,
42        vb: ShardedVarBuilder,
43        lora_config: &[((String, String), LoraConfig)],
44        count: &mut usize,
45        ord: &Ordering,
46        mapper: &dyn DeviceMapper,
47        layer_idx: usize,
48        loading_isq: bool,
49        preload_adapters: &Option<HashMap<String, (ShardedVarBuilder, LoraConfig)>>,
50    ) -> Result<Self> {
51        let hidden_sz = cfg.hidden_size;
52        let intermediate_sz = cfg.intermediate_size;
53        let gate_proj = linear_b(
54            hidden_sz,
55            intermediate_sz,
56            false,
57            mapper.set_device(layer_idx, vb.pp("gate_proj"), loading_isq),
58            mapper.set_device(layer_idx, vb.pp("gate_proj"), false),
59            lora_config,
60            count,
61            ord,
62            preload_adapters,
63        )?;
64        let up_proj = linear_b(
65            hidden_sz,
66            intermediate_sz,
67            false,
68            mapper.set_device(layer_idx, vb.pp("up_proj"), loading_isq),
69            mapper.set_device(layer_idx, vb.pp("up_proj"), false),
70            lora_config,
71            count,
72            ord,
73            preload_adapters,
74        )?;
75        let down_proj = linear_b(
76            intermediate_sz,
77            hidden_sz,
78            false,
79            mapper.set_device(layer_idx, vb.pp("down_proj"), loading_isq),
80            mapper.set_device(layer_idx, vb.pp("down_proj"), false),
81            lora_config,
82            count,
83            ord,
84            preload_adapters,
85        )?;
86        Ok(Self {
87            gate_proj,
88            up_proj,
89            down_proj,
90            act_fn: cfg.hidden_act()?,
91        })
92    }
93
94    fn forward(
95        &self,
96        xs: &Tensor,
97        scalings: Option<Tensor>,
98        global_scaling_weight: f64,
99        is_scaling_pass: Option<f64>,
100    ) -> Result<Tensor> {
101        let original_dtype = xs.dtype();
102        let mut xs = xs.clone();
103        if let Some(t) = self.gate_proj.quantized_act_type() {
104            xs = xs.to_dtype(t)?;
105        }
106        let lhs = self
107            .gate_proj
108            .lora_forward(
109                &xs,
110                scalings.clone(),
111                global_scaling_weight,
112                is_scaling_pass,
113            )?
114            .apply(&self.act_fn)?;
115        let rhs = self.up_proj.lora_forward(
116            &xs,
117            scalings.clone(),
118            global_scaling_weight,
119            is_scaling_pass,
120        )?;
121        let mut res = self.down_proj.lora_forward(
122            &(lhs * rhs)?,
123            scalings,
124            global_scaling_weight,
125            is_scaling_pass,
126        )?;
127        if self.gate_proj.quantized_act_type().is_some() {
128            res = res.to_dtype(original_dtype)?;
129        }
130        Ok(res)
131    }
132}
133
134struct Attention {
135    q_proj: Arc<dyn LinearLayerLike + Send + Sync>,
136    k_proj: Arc<dyn LinearLayerLike + Send + Sync>,
137    v_proj: Arc<dyn LinearLayerLike + Send + Sync>,
138    o_proj: Arc<dyn LinearLayerLike + Send + Sync>,
139    num_heads: usize,
140    num_kv_heads: usize,
141    head_dim: usize,
142    rotary_emb: Arc<RotaryEmbedding>,
143    use_sliding_window: bool,
144    sliding_window: Option<usize>,
145    sdpa_params: SdpaParams,
146}
147
148impl Attention {
149    #[allow(clippy::too_many_arguments)]
150    fn new(
151        rotary_emb: Arc<RotaryEmbedding>,
152        cfg: &Config,
153        vb: ShardedVarBuilder,
154        lora_config: &[((String, String), LoraConfig)],
155        count: &mut usize,
156        ord: &Ordering,
157        mapper: &dyn DeviceMapper,
158        layer_idx: usize,
159        loading_isq: bool,
160        preload_adapters: &Option<HashMap<String, (ShardedVarBuilder, LoraConfig)>>,
161    ) -> Result<Self> {
162        let hidden_sz = cfg.hidden_size;
163        let num_heads = cfg.num_attention_heads;
164        let num_kv_heads = cfg.num_key_value_heads;
165        let head_dim = cfg.head_dim;
166        let bias = cfg.attention_bias;
167        let q_proj = linear_b(
168            hidden_sz,
169            num_heads * head_dim,
170            bias,
171            mapper.set_device(layer_idx, vb.pp("q_proj"), loading_isq),
172            mapper.set_device(layer_idx, vb.pp("q_proj"), false),
173            lora_config,
174            count,
175            ord,
176            preload_adapters,
177        )?;
178        let k_proj = linear_b(
179            hidden_sz,
180            num_kv_heads * head_dim,
181            bias,
182            mapper.set_device(layer_idx, vb.pp("k_proj"), loading_isq),
183            mapper.set_device(layer_idx, vb.pp("k_proj"), false),
184            lora_config,
185            count,
186            ord,
187            preload_adapters,
188        )?;
189        let v_proj = linear_b(
190            hidden_sz,
191            num_kv_heads * head_dim,
192            bias,
193            mapper.set_device(layer_idx, vb.pp("v_proj"), loading_isq),
194            mapper.set_device(layer_idx, vb.pp("v_proj"), false),
195            lora_config,
196            count,
197            ord,
198            preload_adapters,
199        )?;
200        let o_proj = linear_b(
201            num_heads * head_dim,
202            hidden_sz,
203            bias,
204            mapper.set_device(layer_idx, vb.pp("o_proj"), loading_isq),
205            mapper.set_device(layer_idx, vb.pp("o_proj"), false),
206            lora_config,
207            count,
208            ord,
209            preload_adapters,
210        )?;
211        let sliding_window = if layer_idx % 2 == 0 {
212            // ^ Order is SWA, global, SWA
213            Some(cfg.sliding_window)
214        } else {
215            None
216        };
217        Ok(Self {
218            q_proj,
219            k_proj,
220            v_proj,
221            o_proj,
222            num_heads,
223            num_kv_heads,
224            head_dim,
225            rotary_emb,
226            use_sliding_window: layer_idx % 2 == 0, // Order is SWA, global, SWA
227            sliding_window,
228            sdpa_params: SdpaParams {
229                n_kv_groups: num_heads / num_kv_heads,
230                softcap: cfg.attn_logit_softcapping.map(|x| x as f32),
231                softmax_scale: 1.0 / (cfg.query_pre_attn_scalar as f32).sqrt(),
232                sliding_window,
233            },
234        })
235    }
236
237    #[allow(clippy::too_many_arguments)]
238    fn forward(
239        &self,
240        xs: &Tensor,
241        attention_mask: Option<&Tensor>,
242        sliding_attention_mask: Option<&Tensor>,
243        seqlen_offsets: &[usize],
244        kv_cache: &mut Option<(Tensor, Tensor)>,
245        scalings: Option<Tensor>,
246        global_scaling_weight: f64,
247        is_scaling_pass: Option<f64>,
248        flash_params: &FlashParams,
249    ) -> Result<Tensor> {
250        let (b_sz, q_len, _) = xs.dims3()?;
251
252        let original_dtype = xs.dtype();
253        let mut xs = xs.clone();
254        if let Some(t) = self.q_proj.quantized_act_type() {
255            xs = xs.to_dtype(t)?;
256        }
257        let mut q = self.q_proj.lora_forward(
258            &xs,
259            scalings.clone(),
260            global_scaling_weight,
261            is_scaling_pass,
262        )?;
263        let mut k = self.k_proj.lora_forward(
264            &xs,
265            scalings.clone(),
266            global_scaling_weight,
267            is_scaling_pass,
268        )?;
269        let mut v = self.v_proj.lora_forward(
270            &xs,
271            scalings.clone(),
272            global_scaling_weight,
273            is_scaling_pass,
274        )?;
275        if self.q_proj.quantized_act_type().is_some() {
276            q = q.to_dtype(original_dtype)?;
277            k = k.to_dtype(original_dtype)?;
278            v = v.to_dtype(original_dtype)?;
279        }
280
281        let (q, k, v) = if q_len != 1 {
282            let q = q
283                .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
284                .transpose(1, 2)?;
285            let k = k
286                .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
287                .transpose(1, 2)?;
288            let v = v
289                .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
290                .transpose(1, 2)?;
291            (q, k, v)
292        } else {
293            let q = q.reshape((b_sz, self.num_heads, q_len, self.head_dim))?;
294            let k = k.reshape((b_sz, self.num_kv_heads, q_len, self.head_dim))?;
295            let v = v.reshape((b_sz, self.num_kv_heads, q_len, self.head_dim))?;
296            (q, k, v)
297        };
298
299        let (q, k) = self.rotary_emb.forward(&q, &k, seqlen_offsets)?;
300
301        let mask = if self.use_sliding_window {
302            sliding_attention_mask
303        } else {
304            attention_mask
305        };
306
307        // self.sliding_window is None if !self.use_sliding_window
308        let (k, v, mask) = Cache::update_kv_cache_sliding_window(
309            kv_cache,
310            k,
311            v,
312            mask,
313            self.sliding_window,
314            false,
315        )?;
316
317        let mut attn_output = Sdpa.run_attention(
318            &q,
319            &k,
320            &v,
321            mask.as_ref(),
322            Some(flash_params),
323            &self.sdpa_params,
324        )?;
325
326        if let Some(t) = self.q_proj.quantized_act_type() {
327            attn_output = attn_output.to_dtype(t)?;
328        }
329        let mut res = self.o_proj.lora_forward(
330            &attn_output.transpose(1, 2)?.reshape((b_sz, q_len, ()))?,
331            scalings.clone(),
332            global_scaling_weight,
333            is_scaling_pass,
334        )?;
335        if self.q_proj.quantized_act_type().is_some() {
336            res = res.to_dtype(original_dtype)?;
337        }
338        Ok(res)
339    }
340}
341
342struct DecoderLayer {
343    self_attn: Attention,
344    mlp: MLP,
345    input_layernorm: RmsNorm,
346    post_attention_layernorm: RmsNorm,
347    pre_feedforward_layernorm: RmsNorm,
348    post_feedforward_layernorm: RmsNorm,
349}
350
351impl DecoderLayer {
352    #[allow(clippy::too_many_arguments)]
353    fn new(
354        rotary_emb: Arc<RotaryEmbedding>,
355        cfg: &Config,
356        vb: ShardedVarBuilder,
357        lora_config: &[((String, String), LoraConfig)],
358        count: &mut usize,
359        ord: &Ordering,
360        mapper: &dyn DeviceMapper,
361        layer_idx: usize,
362        loading_isq: bool,
363        preload_adapters: &Option<HashMap<String, (ShardedVarBuilder, LoraConfig)>>,
364    ) -> Result<Self> {
365        let self_attn = Attention::new(
366            rotary_emb,
367            cfg,
368            vb.pp("self_attn"),
369            lora_config,
370            count,
371            ord,
372            mapper,
373            layer_idx,
374            loading_isq,
375            preload_adapters,
376        )?;
377        let mlp = MLP::new(
378            cfg,
379            vb.pp("mlp"),
380            lora_config,
381            count,
382            ord,
383            mapper,
384            layer_idx,
385            loading_isq,
386            preload_adapters,
387        )?;
388        let input_layernorm = RmsNorm::new_gemma(
389            cfg.hidden_size,
390            cfg.rms_norm_eps,
391            mapper.set_device(layer_idx, vb.pp("input_layernorm"), false),
392        )?;
393        let post_attention_layernorm = RmsNorm::new_gemma(
394            cfg.hidden_size,
395            cfg.rms_norm_eps,
396            mapper.set_device(layer_idx, vb.pp("post_attention_layernorm"), false),
397        )?;
398        let pre_feedforward_layernorm = RmsNorm::new_gemma(
399            cfg.hidden_size,
400            cfg.rms_norm_eps,
401            mapper.set_device(layer_idx, vb.pp("pre_feedforward_layernorm"), false),
402        )?;
403        let post_feedforward_layernorm = RmsNorm::new_gemma(
404            cfg.hidden_size,
405            cfg.rms_norm_eps,
406            mapper.set_device(layer_idx, vb.pp("post_feedforward_layernorm"), false),
407        )?;
408        Ok(Self {
409            self_attn,
410            mlp,
411            input_layernorm,
412            post_attention_layernorm,
413            pre_feedforward_layernorm,
414            post_feedforward_layernorm,
415        })
416    }
417
418    #[allow(clippy::too_many_arguments)]
419    fn forward(
420        &self,
421        xs: &Tensor,
422        attention_mask: Option<&Tensor>,
423        sliding_attention_mask: Option<&Tensor>,
424        seqlen_offsets: &[usize],
425        kv_cache: &mut Option<(Tensor, Tensor)>,
426        scalings: Option<Tensor>,
427        global_scaling_weight: f64,
428        is_scaling_pass: Option<f64>,
429        flash_params: &FlashParams,
430    ) -> Result<Tensor> {
431        let residual = xs;
432        let xs = self.input_layernorm.forward(xs)?;
433        let xs = self
434            .self_attn
435            .forward(
436                &xs,
437                attention_mask,
438                sliding_attention_mask,
439                seqlen_offsets,
440                kv_cache,
441                scalings.clone(),
442                global_scaling_weight,
443                is_scaling_pass,
444                flash_params,
445            )?
446            .apply(&self.post_attention_layernorm)?;
447        let xs = (xs + residual)?;
448        let residual = &xs;
449        let xs = self
450            .mlp
451            .forward(
452                &xs.apply(&self.pre_feedforward_layernorm)?,
453                scalings,
454                global_scaling_weight,
455                is_scaling_pass,
456            )?
457            .apply(&self.post_feedforward_layernorm)?;
458        residual + xs
459    }
460}
461
462pub struct Model {
463    embed_tokens: candle_nn::Embedding,
464    layers: Vec<DecoderLayer>,
465    norm: RmsNorm,
466    lm_head: Arc<dyn LinearLayerLike + Send + Sync>,
467    hidden_size: usize,
468    device: Device,
469    cache: EitherCache,
470    max_seq_len: usize,
471    mapper: Box<dyn DeviceMapper + Send + Sync>,
472    sliding_window: usize,
473    final_logit_softcapping: Option<f64>,
474    xlora_classifier: Option<XLoraClassifier>,
475    dtype: DType,
476    cfg: ModelConfigMetadata,
477}
478
479impl Model {
480    #[allow(clippy::too_many_arguments)]
481    pub fn new(
482        cfg: &Config,
483        vb: ShardedVarBuilder,
484        lora_config: &[((String, String), LoraConfig)],
485        xlora_config: Option<XLoraConfig>,
486        xlora_ordering: Ordering,
487        is_gptx: bool,
488        normal_loading_metadata: NormalLoadingMetadata,
489        preload_adapters: &Option<HashMap<String, (ShardedVarBuilder, LoraConfig)>>,
490    ) -> Result<Self> {
491        if let Some(ref quant_cfg) = &cfg.quantization_config {
492            tracing::info!(
493                "Using {} quantization: {}.",
494                quant_cfg.name(),
495                quant_cfg.get_bits_name(&vb)
496            );
497        }
498        let mapper = normal_loading_metadata.mapper;
499
500        let vb_m = vb.pp("model");
501        let embed_tokens = layers::embedding(
502            cfg.vocab_size,
503            cfg.hidden_size,
504            mapper.set_nm_device(vb_m.pp("embed_tokens"), false),
505            &cfg.quantization_config,
506        )?;
507        let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
508        let vb_l = vb_m.pp("layers");
509        let mut ropes = HashMap::new();
510        for layer_idx in 0..cfg.num_hidden_layers {
511            let device = mapper
512                .device_for(layer_idx, false)
513                .unwrap_or(&normal_loading_metadata.real_device);
514            ropes.insert(
515                device.location(),
516                Arc::new(RotaryEmbedding::new(
517                    cfg.rope_theta as f32,
518                    cfg.head_dim,
519                    cfg.max_position_embeddings,
520                    device,
521                    is_gptx,
522                    vb.dtype(),
523                )?),
524            );
525        }
526        let mut count = 0;
527        for layer_idx in NiceProgressBar::<_, 'b'>(
528            0..cfg.num_hidden_layers,
529            "Loading repeating layers",
530            &normal_loading_metadata.multi_progress,
531        ) {
532            let device = mapper
533                .device_for(layer_idx, false)
534                .unwrap_or(&normal_loading_metadata.real_device);
535            let rotary_emb = ropes
536                .get(&device.location())
537                .expect("No RoPE for device location!")
538                .clone();
539            let layer = DecoderLayer::new(
540                rotary_emb.clone(),
541                cfg,
542                vb_l.pp(layer_idx),
543                lora_config,
544                &mut count,
545                &xlora_ordering,
546                &*mapper,
547                layer_idx,
548                normal_loading_metadata.loading_isq,
549                preload_adapters,
550            )?;
551            layers.push(layer)
552        }
553        if xlora_config.is_none() && preload_adapters.is_none() {
554            // We are now a LoRA model so we must merge the weights
555            info!("Merging LoRA adapters.");
556            for layer in layers.iter_mut().tqdm() {
557                Arc::get_mut(&mut layer.self_attn.k_proj)
558                    .unwrap()
559                    .merge_weights()?;
560                Arc::get_mut(&mut layer.self_attn.o_proj)
561                    .unwrap()
562                    .merge_weights()?;
563                Arc::get_mut(&mut layer.self_attn.q_proj)
564                    .unwrap()
565                    .merge_weights()?;
566                Arc::get_mut(&mut layer.self_attn.v_proj)
567                    .unwrap()
568                    .merge_weights()?;
569
570                Arc::get_mut(&mut layer.mlp.down_proj)
571                    .unwrap()
572                    .merge_weights()?;
573                Arc::get_mut(&mut layer.mlp.gate_proj)
574                    .unwrap()
575                    .merge_weights()?;
576                Arc::get_mut(&mut layer.mlp.up_proj)
577                    .unwrap()
578                    .merge_weights()?;
579            }
580        }
581        let norm = RmsNorm::new_gemma(
582            cfg.hidden_size,
583            cfg.rms_norm_eps,
584            mapper.set_nm_device(vb_m.pp("norm"), false),
585        )?;
586
587        let lm_head = linear_no_bias(
588            embed_tokens.embeddings().dim(1)?,
589            embed_tokens.embeddings().dim(0)?,
590            mapper.set_nm_device(vb_m.pp("embed_tokens"), normal_loading_metadata.loading_isq),
591            mapper.set_nm_device(vb_m.pp("embed_tokens"), false),
592            lora_config,
593            &mut count,
594            &xlora_ordering,
595            preload_adapters,
596        )?;
597        if xlora_config.is_some() && lm_head.is_lora() {
598            // This is why we can pass dummy values (..., None, 1.0, None)?
599            candle_core::bail!("Got an adapter `lm_head` layer, this is unsupported with X-LoRA.");
600        }
601
602        Ok(Self {
603            embed_tokens,
604            layers,
605            norm,
606            lm_head,
607            device: normal_loading_metadata.real_device,
608            hidden_size: cfg.hidden_size,
609            cache: EitherCache::Full(Cache::new(cfg.num_hidden_layers, true)),
610            max_seq_len: cfg.max_position_embeddings,
611            mapper,
612            sliding_window: cfg.sliding_window,
613            final_logit_softcapping: cfg.final_logit_softcapping,
614            dtype: vb.dtype(),
615            xlora_classifier: xlora_config.map(|xlora_config| {
616                XLoraClassifier::new(xlora_config, count, lora_config.len(), vb, false).unwrap()
617            }),
618            cfg: ModelConfigMetadata {
619                max_seq_len: cfg.max_position_embeddings,
620                num_layers: cfg.num_hidden_layers,
621                hidden_size: cfg.hidden_size,
622                num_kv_heads: cfg.num_key_value_heads,
623                num_attn_heads: cfg.num_attention_heads,
624                sliding_window: None,
625                k_head_dim: cfg.head_dim,
626                v_head_dim: cfg.head_dim,
627            },
628        })
629    }
630
631    #[allow(clippy::too_many_arguments)]
632    fn inner_forward(
633        &self,
634        input_ids: &Tensor,
635        seqlen_offsets: &[usize],
636        scalings: Option<Tensor>,
637        is_full_pass: bool,
638        no_kv_cache: bool,
639        is_scaling_pass: Option<f64>,
640        flash_params: &FlashParams,
641    ) -> Result<Tensor> {
642        let xs = self.embed_tokens.forward(input_ids)?;
643        let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
644        let mut cache = if is_full_pass {
645            if no_kv_cache {
646                let mut new_cache = Vec::new();
647                for _ in 0..self.cache.full().xlora_lock().len() {
648                    new_cache.push(None);
649                }
650
651                self.cache.full().xlora_lock().clone_from(&new_cache);
652            }
653            self.cache.full().xlora_lock()
654        } else {
655            self.cache.full().lock()
656        };
657        let attention_mask = CausalMasker.make_causal_mask_matrix(
658            input_ids,
659            &*cache,
660            xs.dtype(),
661            self.cfg.num_attn_heads,
662        )?;
663        let sliding_attention_mask = CausalMasker.make_sliding_window_causal_mask_matrix(
664            input_ids,
665            &*cache,
666            Some(self.sliding_window),
667            xs.dtype(),
668            self.cfg.num_attn_heads,
669        )?;
670        for (i, layer) in self.layers.iter().enumerate() {
671            xs = self.mapper.map(xs, i)?;
672            xs = layer.forward(
673                &xs,
674                attention_mask
675                    .as_ref()
676                    .map(|m| m.to_device(xs.device()).unwrap())
677                    .as_ref(),
678                sliding_attention_mask
679                    .as_ref()
680                    .map(|m| m.to_device(xs.device()).unwrap())
681                    .as_ref(),
682                seqlen_offsets,
683                &mut cache[i],
684                scalings.clone(),
685                self.xlora_classifier
686                    .as_ref()
687                    .map(|classifier| classifier.get_global_scaling_weight())
688                    .unwrap_or(1.0),
689                is_scaling_pass,
690                flash_params,
691            )?;
692        }
693        let xs = xs.to_device(&self.device)?;
694        let mut xs = xs.apply(&self.norm)?;
695        if let Some(t) = self.lm_head.quantized_act_type() {
696            xs = xs.to_dtype(t)?;
697        }
698
699        let mut xs = self.lm_head.lora_forward(&xs, None, 1.0, None)?;
700
701        if let Some(final_logit_softcapping) = self.final_logit_softcapping {
702            xs = (xs / final_logit_softcapping)?;
703            xs = xs.tanh()?;
704            xs = (xs * final_logit_softcapping)?;
705        }
706
707        Ok(xs)
708    }
709
710    #[allow(clippy::too_many_arguments)]
711    pub fn forward(
712        &self,
713        input_ids: &Tensor,
714        input_ids_full: &Tensor,
715        seqlen_offsets: &[usize],
716        seqlen_offsets_full: &[usize],
717        no_kv_cache: bool,
718        non_granular_state: &Option<NonGranularState>,
719        context_lens: Vec<(usize, usize)>,
720        flash_params: &FlashParams,
721        flash_params_full: &FlashParams,
722    ) -> Result<Tensor> {
723        if self.xlora_classifier.is_some() {
724            let scalings = self.get_scalings(
725                input_ids,
726                input_ids_full,
727                seqlen_offsets,
728                seqlen_offsets_full,
729                no_kv_cache,
730                non_granular_state,
731                &vec![usize::MAX; context_lens.len()],
732                flash_params,
733                flash_params_full,
734            )?;
735
736            if no_kv_cache {
737                let mut res = self
738                    .inner_forward(
739                        input_ids_full,
740                        seqlen_offsets_full,
741                        Some(scalings),
742                        true,
743                        no_kv_cache,
744                        None,
745                        flash_params_full,
746                    )?
747                    .contiguous()?;
748                if let Some(t) = self.lm_head.quantized_act_type() {
749                    res = res.to_dtype(t)?;
750                }
751                extract_logits(
752                    &self.lm_head.lora_forward(&res, None, 1.0, None)?,
753                    context_lens,
754                )
755            } else {
756                // is_full_pass=true is ok because no_kv_cache=false
757                let mut res = self
758                    .inner_forward(
759                        input_ids,
760                        seqlen_offsets,
761                        Some(scalings),
762                        true,
763                        no_kv_cache,
764                        None,
765                        flash_params,
766                    )?
767                    .contiguous()?;
768                if let Some(t) = self.lm_head.quantized_act_type() {
769                    res = res.to_dtype(t)?;
770                }
771                extract_logits(
772                    &self.lm_head.lora_forward(&res, None, 1.0, None)?,
773                    context_lens,
774                )
775            }
776        } else {
777            let mut res = self
778                .inner_forward(
779                    input_ids,
780                    seqlen_offsets,
781                    None,
782                    false,
783                    no_kv_cache,
784                    None,
785                    flash_params,
786                )?
787                .contiguous()?;
788            if let Some(t) = self.lm_head.quantized_act_type() {
789                res = res.to_dtype(t)?;
790            }
791            extract_logits(
792                &self.lm_head.lora_forward(&res, None, 1.0, None)?,
793                context_lens,
794            )
795        }
796    }
797}
798
799impl IsqModel for Model {
800    fn get_layers(
801        &mut self,
802    ) -> (
803        Vec<(&mut Arc<dyn QuantMethod>, Option<usize>)>,
804        &dyn DeviceMapper,
805    ) {
806        let mut tensors = Vec::new();
807        tensors.push((Arc::get_mut(&mut self.lm_head).unwrap().quant_inner(), None));
808        for (i, layer) in self.layers.iter_mut().enumerate() {
809            tensors.push((
810                Arc::get_mut(&mut layer.self_attn.q_proj)
811                    .unwrap()
812                    .quant_inner(),
813                Some(i),
814            ));
815            tensors.push((
816                Arc::get_mut(&mut layer.self_attn.k_proj)
817                    .unwrap()
818                    .quant_inner(),
819                Some(i),
820            ));
821            tensors.push((
822                Arc::get_mut(&mut layer.self_attn.v_proj)
823                    .unwrap()
824                    .quant_inner(),
825                Some(i),
826            ));
827            tensors.push((
828                Arc::get_mut(&mut layer.self_attn.o_proj)
829                    .unwrap()
830                    .quant_inner(),
831                Some(i),
832            ));
833            tensors.push((
834                Arc::get_mut(&mut layer.mlp.gate_proj)
835                    .unwrap()
836                    .quant_inner(),
837                Some(i),
838            ));
839            tensors.push((
840                Arc::get_mut(&mut layer.mlp.up_proj).unwrap().quant_inner(),
841                Some(i),
842            ));
843            tensors.push((
844                Arc::get_mut(&mut layer.mlp.down_proj)
845                    .unwrap()
846                    .quant_inner(),
847                Some(i),
848            ));
849        }
850        (tensors, &*self.mapper)
851    }
852
853    fn residual_tensors(&self) -> Vec<(String, Tensor)> {
854        panic!("Cannot generate UQFF for an adapter model.")
855    }
856}
857
858impl NormalModel for Model {
859    fn forward(
860        &self,
861        _input_ids: &Tensor,
862        _seqlen_offsets: &[usize],
863        _context_lens: Vec<(usize, usize)>,
864        _position_ids: Vec<usize>,
865        _metadata: Option<(Vec<(Tensor, Tensor)>, &PagedAttentionInputMetadata)>,
866        _flash_params: &FlashParams,
867    ) -> Result<Tensor> {
868        unreachable!()
869    }
870    fn xlora_forward(
871        &self,
872        input_ids: &Tensor,
873        input_ids_full: &Tensor,
874        seqlen_offsets: &[usize],
875        seqlen_offsets_full: &[usize],
876        no_kv_cache: bool,
877        non_granular_state: &Option<crate::xlora_models::NonGranularState>,
878        context_lens: Vec<(usize, usize)>,
879        _position_ids: Vec<usize>,
880        flash_params: &FlashParams,
881        flash_params_full: &FlashParams,
882    ) -> Result<Tensor> {
883        self.forward(
884            input_ids,
885            input_ids_full,
886            seqlen_offsets,
887            seqlen_offsets_full,
888            no_kv_cache,
889            non_granular_state,
890            context_lens,
891            flash_params,
892            flash_params_full,
893        )
894    }
895    fn cache(&self) -> &EitherCache {
896        &self.cache
897    }
898    fn cache_mut(&mut self) -> &mut EitherCache {
899        &mut self.cache
900    }
901    fn device(&self) -> &Device {
902        &self.device
903    }
904    fn is_xlora(&self) -> bool {
905        false
906    }
907    fn max_seq_len(&self) -> usize {
908        self.max_seq_len
909    }
910    fn config(&self) -> &ModelConfigMetadata {
911        &self.cfg
912    }
913}
914
915impl ScalingsMaker for Model {
916    fn dtype(&self) -> DType {
917        self.dtype
918    }
919    fn get_cache(&self) -> &EitherCache {
920        &self.cache
921    }
922    fn get_classifier(&self) -> &XLoraClassifier {
923        self.xlora_classifier.as_ref().unwrap()
924    }
925    fn forward(
926        &self,
927        input_ids: &Tensor,
928        seqlen_offsets: &[usize],
929        scalings: Tensor,
930        is_full_pass: bool,
931        no_kv_cache: bool,
932        is_scaling_pass: Option<f64>,
933        _context_lens: &[usize],
934        flash_params: &FlashParams,
935    ) -> Result<Tensor> {
936        self.inner_forward(
937            input_ids,
938            seqlen_offsets,
939            Some(scalings),
940            is_full_pass,
941            no_kv_cache,
942            is_scaling_pass,
943            flash_params,
944        )
945    }
946}
947
948impl AnyMoeBaseModelMixin for Model {}