mistralrs_quant/cublaslt/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
// https://github.com/huggingface/text-embeddings-inference/blob/cc1c510e8d8af8447c01e6b14c417473cf2dfda9/backends/candle/src/layers/cublaslt.rs
#![allow(unused_variables, unused_imports, dead_code)]
use candle_core::{Device, Result, Tensor};
use candle_nn::Activation as CandleActivation;
use once_cell::sync::Lazy;
use std::sync::{Mutex, Once};
#[cfg(feature = "cuda")]
mod api;
#[cfg(feature = "cuda")]
mod matmul;
#[cfg(feature = "cuda")]
pub use api::{fused_batch_matmul, fused_batch_matmul_f8, CublasLt};
pub enum F8MatmulOutType {
F8,
BF16,
}
static INIT: Once = Once::new();
static mut CUBLASLT: Option<CublasLtWrapper> = None;
pub static CUBLASLT_HANDLE: Lazy<Mutex<Option<&'static CublasLtWrapper>>> =
Lazy::new(|| Mutex::new(None));
pub fn maybe_init_cublas_lt_wrapper() {
unsafe {
INIT.call_once(|| {
#[cfg(not(feature = "cuda"))]
{
CUBLASLT = None;
}
#[cfg(feature = "cuda")]
{
// Check if we can call the driver
// Then check if we can create a device
// Then check that the device is CUDA
use candle_core::cuda_backend::cudarc::driver;
CUBLASLT = driver::result::init()
.ok()
.and_then(|_| Device::cuda_if_available(0).ok())
.and_then(|device| match device {
Device::Cuda(_) => Some(CublasLtWrapper {
cublaslt: CublasLt::new(&device).unwrap(),
}),
_ => None,
});
}
#[allow(static_mut_refs)]
let cublaslt: Option<&'static CublasLtWrapper> = CUBLASLT.as_ref();
*CUBLASLT_HANDLE.lock().unwrap() = cublaslt;
});
}
}
#[derive(Debug, Clone)]
pub struct CublasLtWrapper {
#[cfg(feature = "cuda")]
pub cublaslt: CublasLt,
}
impl CublasLtWrapper {
/// Fused batch matmul + add + Relu/Gelu activation using CublasLt for F8 dtypes.
///
/// # Arguments
///
/// * `a` - Input tensor of size BxMxK
/// * `b` - Input tensor of size BxNxK
/// * `dequant_a_scale` - F32 scalar tensor, used to `a` the out tensor.
/// * `dequant_b_scale` - F32 scalar tensor, used to `b` the out tensor.
/// * `quantize_scale` - F32 scalar tensor, used to requantize.
/// * `out` - Optional Output tensor of size BxNxK.
/// If set and beta != 0, will be added to the end result of A*B before `act`
/// * `alpha` - Optional scaling factor for A*B
/// * `beta` - Optional scaling factor for C
/// * `bias` - Optional bias tensor of size M
/// * `act` - Optional Gelu or Relu activation. If set, will be added to the end result
///
/// The resulting tensor is of shape NxM
#[allow(clippy::too_many_arguments)]
pub fn batch_matmul_f8(
&self,
a: &Tensor,
b: &Tensor,
dequant_a_scale: &Tensor,
dequant_b_scale: &Tensor,
quantize_scale: &Tensor,
out: Option<&Tensor>,
alpha: Option<f32>,
beta: Option<f32>,
bias: Option<&Tensor>,
act: Option<CandleActivation>,
out_dtype: F8MatmulOutType,
) -> Result<Tensor> {
#[cfg(feature = "cuda")]
{
let inner_act = act.map(|a| match a {
CandleActivation::Relu => matmul::Activation::Relu,
CandleActivation::Gelu => matmul::Activation::Gelu,
_ => unreachable!("Unsupported activation in cublaslt matmul"),
});
let mut result = fused_batch_matmul_f8(
a,
b,
dequant_a_scale,
dequant_b_scale,
quantize_scale,
out,
alpha,
beta,
bias,
inner_act,
out_dtype,
self.cublaslt.clone(),
)?;
if Some(CandleActivation::Swiglu) == act {
result = candle_nn::ops::swiglu(&result)?;
}
Ok(result)
}
#[cfg(not(feature = "cuda"))]
{
candle_core::bail!("`cuda` feature is not enabled")
}
}
/// Fused batch matmul + add + Relu/Gelu activation using CublasLt.
///
/// # Arguments
///
/// * `a` - Input tensor of size BxMxK
/// * `b` - Input tensor of size BxNxK
/// * `out` - Optional Output tensor of size BxNxK.
/// If set and beta != 0, will be added to the end result of A*B before `act`
/// * `alpha` - Optional scaling factor for A*B
/// * `beta` - Optional scaling factor for C
/// * `bias` - Optional bias tensor of size M
/// * `act` - Optional Gelu or Relu activation. If set, will be added to the end result
///
/// The resulting tensor is of shape NxM
#[allow(clippy::too_many_arguments)]
pub fn batch_matmul(
&self,
a: &Tensor,
b: &Tensor,
out: Option<&Tensor>,
alpha: Option<f32>,
beta: Option<f32>,
bias: Option<&Tensor>,
act: Option<CandleActivation>,
) -> Result<Tensor> {
#[cfg(feature = "cuda")]
{
let inner_act = act.map(|a| match a {
CandleActivation::Relu => matmul::Activation::Relu,
CandleActivation::Gelu => matmul::Activation::Gelu,
_ => unreachable!("Unsupported activation in cublaslt matmul"),
});
let mut result = fused_batch_matmul(
a,
b,
out,
alpha,
beta,
bias,
inner_act,
self.cublaslt.clone(),
)?;
if Some(CandleActivation::Swiglu) == act {
result = candle_nn::ops::swiglu(&result)?;
}
Ok(result)
}
#[cfg(not(feature = "cuda"))]
{
candle_core::bail!("`cuda` feature is not enabled")
}
}
}