mistralrs_quant/unquantized/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
use std::{
    borrow::Cow,
    io::Cursor,
    num::NonZeroUsize,
    sync::{atomic::AtomicUsize, Arc},
};

use byteorder::{LittleEndian, ReadBytesExt};
use candle_core::{quantized::GgmlDType, DType, Device, DeviceLocation, Result, Shape, Tensor, D};
use candle_nn::Linear;

use crate::{
    cublaslt::{maybe_init_cublas_lt_wrapper, CUBLASLT_HANDLE},
    generate_isq, generate_isq_imatrix,
    hqq::{HqqAxis, HqqBits, HqqConfig, HqqLayer, ISQ_HQQ_DEFAULT_OPT_STEPS, ISQ_HQQ_GROUP_SIZE},
    utils::{deserialize_tensor, serialize_tensor, version_is_compatible, HQFF_VERSION},
    FP8Linear, GgufMatMul, ImatrixLayerStats, IsqType, QuantMethod, QuantMethodConfig,
    QuantizedSerde, QuantizedSerdeType,
};

#[derive(Debug)]
pub struct UnquantLinear {
    w: Tensor,
    b: Option<Tensor>,
    stats: Option<ImatrixLayerStats>,
}

impl QuantMethod for UnquantLinear {
    fn new(method: QuantMethodConfig) -> candle_core::Result<Self>
    where
        Self: Sized,
    {
        match method {
            QuantMethodConfig::Gguf { .. }
            | QuantMethodConfig::Gptq { .. }
            | QuantMethodConfig::Hqq { .. }
            | QuantMethodConfig::Dummy
            | QuantMethodConfig::FP8 { .. }
            | QuantMethodConfig::Bnb { .. } => unreachable!(),
            QuantMethodConfig::Unquantized(l) => Ok(Self {
                w: l.weight().clone(),
                b: l.bias().cloned(),
                stats: None,
            }),
        }
    }

    fn dequantize_w(&self) -> Result<Tensor> {
        Ok(self.w.clone())
    }

    fn forward(&self, a: &Tensor) -> Result<Tensor> {
        // Batch matrix multiplication
        maybe_init_cublas_lt_wrapper();

        let w = match *a.dims() {
            [b1, b2, _, _] => self.w.broadcast_left((b1, b2))?,
            [bsize, _, _] => self.w.broadcast_left(bsize)?,
            _ => self.w.clone(),
        };

        if let Some(stats) = &self.stats {
            stats.process(a)?;
        }

        if let Some(b) = self.b.as_ref() {
            let mut tgt_shape = a.dims().to_vec();
            tgt_shape[a.dims().len() - 1] = w.dim(D::Minus2)?;
            let b = b.broadcast_as(Shape::from_dims(&tgt_shape))?;

            match a.device().location() {
                DeviceLocation::Cuda { .. } => {
                    // Try to use cublaslt, otherwise fallback to gemm
                    if let (Device::Cuda(_), Some(cublaslt)) =
                        (a.device(), *CUBLASLT_HANDLE.lock().unwrap())
                    {
                        cublaslt
                            .batch_matmul(
                                a,
                                &w,
                                Some(&b.t()?.contiguous()?),
                                None,
                                Some(1.0),
                                None,
                                None,
                            )?
                            .t()
                    } else {
                        let mut out = b.contiguous()?;
                        a.matmul_with_alpha_beta(&w, &mut out, None)?;
                        Ok(out)
                    }
                }
                DeviceLocation::Metal { .. } => {
                    let mut out = b.contiguous()?.to_dtype(DType::F32)?;
                    a.to_dtype(DType::F32)?
                        .matmul_with_alpha_beta(&w.to_dtype(DType::F32)?.t()?, &mut out, None)
                        .unwrap();
                    out.to_dtype(a.dtype())
                }
                DeviceLocation::Cpu => {
                    let mut out = b.contiguous()?;
                    a.matmul_with_alpha_beta(&w.t()?, &mut out, None)?;
                    Ok(out)
                }
            }
        } else {
            a.matmul(&w.t()?)
        }
    }

    fn quantized_act_type(&self) -> Option<DType> {
        None
    }

    fn add_delta_w(&self, delta: &Tensor) -> Result<Arc<dyn QuantMethod>> {
        Ok(Arc::new(Self {
            w: (&self.w + delta)?,
            b: self.b.clone(),
            stats: self.stats.clone(),
        }))
    }

    fn dtype_and_device(&self) -> (DType, candle_core::Device) {
        (self.w.dtype(), self.w.device().clone())
    }

    fn get_bias_mut(&mut self) -> Option<&mut Tensor> {
        None
    }

    fn apply_isq(
        self: Arc<Self>,
        dtype: Option<IsqType>,
        device: Device,
        n_quantized: &AtomicUsize,
        imatrix_weight: Option<Vec<f32>>,
    ) -> Result<Arc<dyn QuantMethod>> {
        match dtype {
            /*Some(IsqType::HQQ1 | IsqType::HQQ2 | IsqType::HQQ3 | */
            Some(IsqType::HQQ4 | IsqType::HQQ8) => {
                if imatrix_weight.is_some() {
                    // TODO just warn?
                    candle_core::bail!("HQQ does not support imatrix.");
                }

                n_quantized.fetch_add(1, std::sync::atomic::Ordering::Relaxed);
                let bits = match dtype.unwrap() {
                    IsqType::HQQ8 => HqqBits::Eight,
                    IsqType::HQQ4 => HqqBits::Four,
                    // IsqType::HQQ3 => HqqBits::Three,
                    // IsqType::HQQ2 => HqqBits::Two,
                    // IsqType::HQQ1 => HqqBits::One,
                    _ => unreachable!(),
                };
                let cfg = HqqConfig {
                    bits,
                    group_size: ISQ_HQQ_GROUP_SIZE.try_into()?,
                    axis: HqqAxis::Zero,
                    optimization_steps: ISQ_HQQ_DEFAULT_OPT_STEPS,
                    round_zeros: false,
                    channel_wise: true,
                };
                let res = HqqLayer::quantize(&self.w.to_device(&device)?, &device, cfg)?;
                if let Some(bias) = &self.b {
                    let bias = bias
                        .to_device(&device)?
                        .to_dtype(res.dtype_and_device().0)?;
                    Ok(Arc::new(res.with_bias(bias)))
                } else {
                    Ok(Arc::new(res))
                }
            }
            Some(
                IsqType::Q2K
                | IsqType::Q3K
                | IsqType::Q4K
                | IsqType::Q4_0
                | IsqType::Q4_1
                | IsqType::Q5K
                | IsqType::Q5_0
                | IsqType::Q5_1
                | IsqType::Q6K
                | IsqType::Q8K
                | IsqType::Q8_0
                | IsqType::Q8_1,
            ) => {
                let dtype: GgmlDType = dtype.unwrap().try_into()?;
                let res = if let Some(imatrix_weight) = imatrix_weight {
                    generate_isq_imatrix!(self.w, imatrix_weight, device, dtype, n_quantized)
                } else {
                    generate_isq!(self.w, device, dtype, n_quantized)
                };
                Ok(Arc::new(GgufMatMul::new(QuantMethodConfig::Gguf {
                    q_weight: res,
                    b: self
                        .b
                        .as_ref()
                        .map(|b| b.to_dtype(DType::F32).unwrap().to_device(&device).unwrap()),
                })?))
            }
            Some(IsqType::F8E4M3) => {
                if imatrix_weight.is_some() {
                    // TODO just warn?
                    candle_core::bail!("F8E4M3 does not support imatrix.");
                }

                let w = self.w.to_device(&device)?;
                let b = if let Some(b) = &self.b {
                    Some(b.to_device(&device)?)
                } else {
                    None
                };
                Ok(Arc::new(FP8Linear::new(QuantMethodConfig::FP8 {
                    lin: Linear::new(w, b),
                    dtype: DType::F8E4M3,
                })?))
            }
            None => {
                // Ignore imatrix altogether

                let w = self.w.to_device(&device)?;
                let b = if let Some(b) = &self.b {
                    Some(b.to_device(&device)?)
                } else {
                    None
                };
                Ok(Arc::new(UnquantLinear::new(
                    QuantMethodConfig::Unquantized(Linear::new(w, b)),
                )?))
            }
        }
    }

    fn get_max_isq_cpu_threads(&self, dtype: IsqType) -> Option<NonZeroUsize> {
        match dtype {
            /*IsqType::HQQ1 | IsqType::HQQ2 | IsqType::HQQ3 | */
            IsqType::HQQ4 | IsqType::HQQ8 => {
                // Use 1 because our HQQ quantizes on the GPU
                Some(1.try_into().unwrap())
            }
            IsqType::F8E4M3 => None,
            IsqType::Q2K
            | IsqType::Q3K
            | IsqType::Q4K
            | IsqType::Q4_0
            | IsqType::Q4_1
            | IsqType::Q5K
            | IsqType::Q5_0
            | IsqType::Q5_1
            | IsqType::Q6K
            | IsqType::Q8K
            | IsqType::Q8_0
            | IsqType::Q8_1 => None,
        }
    }

    fn unquant_weight_bias(&self) -> Option<(Tensor, Option<Tensor>)> {
        Some((self.w.clone(), self.b.clone()))
    }

    fn begin_track_stats(&mut self) -> Result<()> {
        self.stats = Some(ImatrixLayerStats::new(&self.w, self.w.device())?);
        Ok(())
    }

    fn end_track_stats(&self) -> Result<Tensor> {
        if let Some(stats) = &self.stats {
            let imatrix = stats.compute_imatrix()?;
            stats.clear()?;
            Ok(imatrix)
        } else {
            candle_core::bail!("`{}` does not support tracking stats.", self.name())
        }
    }

    fn maybe_to_gguf_quant(self: Arc<Self>) -> Result<Arc<dyn QuantMethod>> {
        Ok(self.clone())
    }
}

// Serialization structure:
//
// -----------------------
// HQFF version, u32, little endian
// -----------------------
// ISQ type (1 for unquantized), u8, little endian
// -----------------------
// Whether bias data is included, u8 boolean
// -----------------------
// Weight tensor data generated by `serialize_tensor`. Refer to its docs for layout.
// -----------------------
// [OPTIONAL] Bias tensor data generated by `serialize_tensor`. Refer to its docs for layout.
// -----------------------

impl QuantizedSerde for UnquantLinear {
    fn isq_serde_supported(&self) -> bool {
        true
    }
    fn name(&self) -> &'static str {
        "unquant-linear"
    }
    fn serialize(&self) -> Result<Cow<[u8]>> {
        let mut buffer = Vec::new();

        buffer.extend(&HQFF_VERSION.to_le_bytes());

        // ISQ type for unquant is 1
        buffer.push(QuantizedSerdeType::Unquant as u8);

        // Has bias
        buffer.push(self.b.is_some() as u8);

        // Weight
        serialize_tensor(&mut buffer, &self.w)?;

        if let Some(bias) = &self.b {
            // Bias
            serialize_tensor(&mut buffer, bias)?;
        }

        Ok(Cow::from(buffer))
    }

    fn deserialize(data: Cow<[u8]>, device: &Device) -> Result<Arc<dyn QuantMethod>>
    where
        Self: Sized,
    {
        let mut buffer = Cursor::new(data.to_vec());

        let version = buffer.read_u32::<LittleEndian>()?;
        if let Err(e) = version_is_compatible(version) {
            return Err(candle_core::Error::wrap(e));
        }

        let isq_type = buffer.read_u8()? as usize;
        if isq_type != QuantizedSerdeType::Unquant as usize {
            candle_core::bail!(
                "ISQ type ({isq_type}) doesn't match expected type {}",
                QuantizedSerdeType::Unquant as usize
            );
        }

        let has_bias = buffer.read_u8()? != 0;

        let w = deserialize_tensor(&mut buffer, device)?;

        let b = if has_bias {
            Some(deserialize_tensor(&mut buffer, device)?)
        } else {
            None
        };

        Ok(Arc::new(Self { w, b, stats: None }))
    }
}